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Abstract 

I construct time-varying uncertainty around forecasts for the Swedish 
economy published by the National Institute of Economic Research. Us-
ing several statistics for evaluating interval and density forecasts of GDP 
growth and unemployment in 2014--2019, I find that time-varying uncer-
tainty has performed better than standard measures of unconditional un-
certainty derived from normal distributions with constant variance. 
Compared to t distributions, however, the results are not as clear, but 
speak in favor of time-varying uncertainty. Using Bayesian model com-
parisons, the results show that time-varying uncertainty has been particu-
larly important for GDP growth, whereas correlations between revisions 
have played a bigger role for the unemployment rate. I study forecast un-
certainty during the initial phase of the Covid-19 episode and find that 
the rise in forecast uncertainty was unprecedented. 

 

JEL classification code: C11, C32, C53, C54 

Keywords: Stochastic volatility, Density forecast, Interval forecast, 
Bayesian
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Sammanfattning 

Jag beräknar tidsvarierade osäkerhet kring prognoser gjorda av 
Konjunkturinstitutet. Med hjälp av flera olika utvärderingsmått för att ut-
värdera intervall- och täthetsprognoser för BNP-tillväxt och arbetslöshet 
under 2014–2019 finner jag att tidsvarierande osäkerhet har varit mer 
lämpligt än vanligen använda mått baserade på normalfördelning med 
konstant varians. Jämfört med t-fördelning är dock resultaten inte lika 
entydiga, men talar till den tidsvarierande osäkerhetens fördel. En bayesi-
ansk modelljämförelse visar att tidsvarierande osäkerhet har varit särskilt 
viktigt för BNP-tillväxten, medan korrelation mellan prognosrevideringar 
spelat en större roll för arbetslösheten. Jag studerar prognososäkerheten 
under den initiala fasen av covid-19 och kommer fram till att uppgången 
i prognososäkerhet saknade motstycke. 
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1 Introduction

Forecasts are uncertain, and uncertainty about the future is the reason why forecasting is

conducted. Point forecasts have historically been the focal point in policy forecasting, but

the Bank of England and Sveriges Riksbank pioneered the use of interval forecasts, known as

fan charts, in the late 1990s (Britton et al., 1998; Blix and Sellin, 1998). Interval forecasts put

less emphasis on a single number and clearly indicate that outcomes within an entire range

are plausible. Fan charts are today presented by many central banks and other professional

forecasters to give an indication of the level of uncertainty that their forecasts are associated

with. For a summary of institutions and central banks that present fan charts, see Ohnsorge

et al. (2016).

This paper employs the method proposed by Clark et al. (2020) to estimate time-varying

levels of forecast uncertainty. The method relies on stochastic volatility, which is ubiquitous

in today’s macroeconometric literature, to cope with changes in forecast uncertainty. In con-

trast to more traditional fan chart approaches, Clark et al. (2020) only apply the machinery

of stochastic volatilities to the forecast errors indirectly. The method operates on the most

recent nowcasting error, as well as revisions of forecasts for future outcomes. Since times

associated with heightened forecast uncertainty are unexpected, these often lead to large

forecast revisions between successive forecasting rounds. These large revisions are picked up

as a signal of increased forecast uncertainty, which directly spills over to predictive distri-

butions and intervals. Conversely, when the economy offers few surprises and revisions are

small, the method allows for forecast uncertainty to decrease. The decrease leads to sharper

predictive distributions and intervals that are more informative.

I use the time-varying model to characterize forecast uncertainty surrounding quarterly

forecasts made by the National Institute of Economic Research, one of Sweden’s most promi-

nent forecasters. The variables that I study are GDP growth and the unemployment rate.

My results show that for the evaluation period 2014–2019, time-varying uncertainty improves

density and interval forecasts compared to normal distributions with constant variance. I
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also make comparisons with a thick-tailed alternative based on a t distribution. Time-varying

uncertainty for the most part dominates, but not always. In a Bayesian model comparison

framework, the results show that time variation has been more important than contempo-

raneous correlation between revisions for characterizing GDP growth forecast uncertainty.1

I obtain the opposite result for the unemployment rate. Finally, I show that forecast uncer-

tainty for both variables increased substantially because of the Covid-19 pandemic.

Uncertainty can be a powerful tool when forecasters communicate projections.2 Clements

(2018) compares the conditional predictive densities provided by the Survey of Professional

Forecasters to unconditional density forecasts. In similar work, Knüppel and Schultefranken-

feld (2019) evaluate inflation uncertainty forecasts from several central banks. Both Clements

(2018) and Knüppel and Schultefrankenfeld (2019) find that forecasters tend to be undercon-

fident at short horizons and overconfident at longer horizons. This result supports previous

findings in the literature that uncertainty forecasts often overstate the level of uncertainty,

see Clements (2004); Wallis (2004). Knüppel (2014) accounts for correlation between forecast

errors at different horizons and provide evidence that doing so can have a large impact on

estimated forecast uncertainty. Similarly, Knüppel (2018) highlights the sensitivity to small

samples that occurs when the forecast horizon is increased, and no or few historical forecast

errors are available. Exploiting correlation between forecast errors can mitigate estimation

errors considerably.

Clark et al. (2020) develop their method based on nowcasting errors and forecast revi-

sions. The more standard way is basing descriptions of forecast uncertainty on historical

forecast errors in conjunction with a model that prescribes a variance that is constant over

time, see for example Sveriges Riksbank (2007); Reifschneider and Tulip (2017). Intervals

with constant variance give a description of the average, or unconditional, uncertainty of a

1Revisions that originate in the same period are allowed to be correlated, but serial correlation between
revisions from different points in time is not permitted. The latter would imply inefficient forecasts, but
throughout I assume forecasts to be efficient.

2In addition to uncertainty, many forecasters also describe risks and whether they are balanced. However,
Knüppel and Schultefrankenfeld (2012) show that the statistical value of the quantitative risk assessments
published by Bank of England and Sveriges Riksbank is small.
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forecaster’s projections. However, a forecaster wishing to communicate a quantitative per-

ception of the current level of forecast uncertainty may be dissatisfied using average levels

of uncertainty as a proxy.3 The reason is not only that the intervals—or, more generally,

the dispersions in the full predictive distributions—are perceived to be too narrow in times

of turbulence, but also that they are too wide in more predictable and certain times. Thus,

uncertainty intervals and predictive distributions that accurately can give a characterization

of the level of forecast uncertainty in real-time can be highly useful tools that complement

point forecasts and qualitative descriptions of uncertainties. I give some evidence in that

direction in this work.

2 Modeling Time-Varying Uncertainty of Forecast Er-

rors

The estimation approach I use to describe time-varying uncertainties of forecast errors is

based on the techniques developed by Clark et al. (2020). The time index t refers to time in

quarters, and I operate at the end of the quarter so that the outcome for t− 1 is known at

time t. Let ŷt|t−h denote a forecast for time t produced at time t − h, where h = 0, . . . , H.

Due to publication delays, yt is not observed at time t and ŷt|t denotes its forecast, that is

the nowcast. Let also et|t−h = yt− ŷt|t−h denote the forecast error for the h horizon forecast.

Finally, µt|t−h = ŷt|t−h− ŷt|t−h−1 represents the forecast revision for time t between forecasts

made at the successive points in time t− h− 1 and t− h.

The main idea behind the method is that the forecast error et|t−h can be decomposed

3One way to communicate the current level of uncertainty is to relate it to the historical level and whether
the current situation is perceived to be more, less or equally uncertain as the past. Reifschneider and Tulip
(2017) discuss how the members of the Federal Open Market Committee use such an approach.
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into a nowcasting error and the sum of forecast revisions as

et|t−h = et|t +
h∑
i=1

µt|t−h+i, h = 1, . . . , H. (1)

I maintain an assumption that the forecasts are optimal in the sense of Mincer and Zarnowitz

(1969). Consequently, the sequence {µt|t−h}Hh=0 is a martingale difference sequence. The

implication is that the terms in (1) are uncorrelated.4

2.1 Econometric Model

I here provide a brief overview of the method I use and relegate some of the details to

Appendix A. The objective of the econometric analysis is to obtain a useful description of

the posterior distribution p(eT |T , . . . , eT+H|T |η).5 The methodology achieves this goal by

postulating a model for the terms present in (1) that is itself subsequently exploited in order

to target the posterior distribution of interest. Let first

ηt =



et−1|t−1

µt|t
...

µt+H−1|t


.

The data vector ηt is assumed to have mean zero so that forecasts are unbiased. While

the sequence of random variables {ηt} is uncorrelated over time, it is not independent. The

methodology prescribes a relatively standard multivariate stochastic volatility model, see, for

instance, the seminal work by Primiceri (2005); Cogley and Sargent (2005), that is specified

4Optimal is here taken to mean that E(ŷt|t−h+s|Ωt−h+q) = ŷt|t−h+q, s > q ≥ 0 and Ωt is the information
as of time t. The assumption directly implies that the expectation of a future revision µt|t−h+s is zero given
a previous revision µt|t−h+q, since E(µt|t−h+s|Ωt−h+q) = E(ŷt|t−h+s|Ωt−h+q)− ŷt|t−h+q = 0.

5The predictive distribution for the variable of interest is obtained by centering the distribution around
the forecasts ŷT |T , . . . , ŷT+H|T .
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as

ηt = AΛ0.5
t εt (2)

εt ∼ iid N(0, IH+1)

A =



1 0 · · · 0

a2,1 1 · · · 0

...
...

. . .
...

aH+1,1 aH+1,2 · · · 1


Λt = diag(exp{λ1,t}, . . . , exp{λH+1,t}).

Clark et al. (2020) use separate random walk processes for the log-volatilities λi,t in their

main specification, connected through a possibly non-diagonal covariance matrix for the log-

volatility innovations. Because of a much shorter data set, I confine myself in this analysis

to their alternative specification based on a single common factor.6 Let the evolution of the

common volatility factor be given by

λ0,t = λ0,t−1 + νt, νt ∼ N(0, 1), λ0,0 = 0. (3)

The H + 1 equation-specific log-volatilities are assumed to relate linearly to the common

factor through

λi,t = λi,0 + βiλ0,t.

The role of λi,0 is to accommodate varying levels of baseline volatility for the elements of ηt,

whereas βi allows for various degrees of pass-through of the common factor on the volatilities

of the elements of η. The lower triangular matrix A, on the other hand, introduces correlation

6However, instead of fixing one of the loadings and letting the variance of the factor innovation be free,
I let all loadings be freely estimated and set the variance of the factor innovation to one.
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among the elements of ηt. I investigate the relative importance of time variation (βi 6= 0)

and correlation (ai,j 6= 0) in Section 3.3.

3 Statistics for Evaluating Descriptions of Uncertainty

I compare the interval and density forecasts produced using the time-varying method with

those made by alternative methods to evaluate the potential appropriateness of describing

forecast uncertainty in a time-varying manner. A number of statistics can be used to this

end. In this paper, I use empirical coverage rates and interval scores to assess the rela-

tive merits of the methods’ interval forecasts. Furthermore, the quality of the respective

density forecasts are compared by means of the log predictive and continuous ranked prob-

ability scores. Finally, the model with time-varying uncertainty is compared to restricted

alternatives using marginal likelihoods.

3.1 Interval Forecasts

3.1.1 Empirical Coverage Rates

A well-calibrated interval forecast should have an empirical coverage rate that is close to its

nominal 100(1 − α)% rate. I therefore compare the methods’ empirical coverage rates and

their closeness to their target levels by computing a sequence of ’hits’ and ’misses’, that is,

Iαt (h) =


1 if yt ∈ [lαt|t−h, u

α
t|t−h],

0 otherwise,

where lαt|t−h and uαt|t−h are the lower and upper ends of the interval forecast for horizon h with

nominal coverage rate 100(1 − α)%. The empirical coverage rate is the average of the hit

sequence, 1
Th

∑Th
t=1 I

α
t (h), where Th is the number of forecasts for horizon h in the evaluation

period.
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3.1.2 Interval Scores

In general, a good forecast balances calibration and sharpness appropriately (Gneiting et al.,

2007).7 For example, an interval forecaster that with probability 1 − α selects the forecast

(ŷt|t−h − c1, ŷt|t−h + c1), with c1 being a very large number, and with probability α instead

utilizes the interval forecast (ŷt|t−h − c2, ŷt|t−h + c2), c2 being infinitesimally small, will have

an empirical coverage rate that on average is close to the nominal target. However, the

forecast is inarguably useless because of the forecaster’s sole focus on calibration without

any attention to sharpness.

Gneiting and Raftery (2007) propose an alternative scoring rule for evaluating interval

forecasts that takes into account both calibration and sharpness. The proposed interval score

is

Sint
α,h =

1

Th

Th∑
t=1

Sint
α (lαt|t−h, u

α
t|t−h; yt)

Sint
α (u, l; y) = (u− l) +

2

α
(l − y)1{y < l}+

2

α
(y − u)1{y > u}.

The score gives a more accurate picture of the quality of an interval forecast than the empir-

ical coverage rate alone does in that it also acknowledges the informativeness of an interval.

If two intervals both contain the outcome, the score rewards the shorter. Similarly, if both

intervals do not contain the outcome, an additional penalty is incurred that is proportional

to the size of the deviation of the outcome from the endpoint.

3.2 Density Forecasts

To evaluate density forecasts, I employ the commonly used scoring rules log score (LS) and

continuous ranked probability score (CRPS). Both scores are negatively oriented and defined

7Calibration is the statistical consistency between forecasts and realized values. Sharpness refers to the
concentration in the predictive distributions. The goal of interval or density forecasts is thus to maximize
sharpness subject to the constraint that the forecasts are well calibrated.
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as

LSt,h = − log[ft|t−h(et|t−h)]

CRPSt,h =

∫ ∞
−∞

[
Ft|t−h(z)− 1(et|t−h < z)

]
dz,

where ft|t−h(et|t−h) = f(et|t−h|ηt−h, ..., η1) is the predictive density for time t formed at t− h

evaluated at the realized forecast error et|t−h. The corresponding cumulative distribution

function is Ft|t−h(et|t−h) =
∫ et|t−h

−∞ ft|t−h(z) dz. The predictive distributions are not available in

closed form, but estimates can be computed based on the draws of parameters and volatilities

using a mixture-of-parameters formulation that Krüger et al. (2020) show produces accurate

estimates.

3.3 Bayesian Model Comparison via the Marginal Likelihood

To compare models in a Bayesian framework, the most common statistic is the marginal

likelihood

p(η) =

∫
p(η|Θ)p(Θ) dΘ,

where Θ contains the unknown parameters and volatilities to be integrated out. Assuming

models with equal prior probabilities, the posterior probability of the model is proportional

to the marginal likelihood. I estimate the marginal likelihood using bridge sampling as

proposed by Meng and Wong (1996), see also Gronau et al. (2017).8

8Bridge sampling relies on a proposal distribution for which I use a multivariate t distribution with 10
degrees of freedom. Its mean and scale matrix are set equal to the sample mean and covariance of the first
half of the post-burn-in MCMC draws, and the remaining draws are used in the evaluation steps of the
bridge sampling iterations following the suggestion by Overstall and Forster (2010). Changing the marginal
likelihood estimator to the modified harmonic mean proposed by Gelfand and Dey (1994) with a truncated
normal distribution for tuning function as suggested by Geweke (1999) yields results that are very similar.
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4 Data

The data consist of quarterly forecasts for Sweden made by the National Institute of Eco-

nomic Research (NIER). The NIER publishes reports on the Swedish economy in March,

June, October, and December.9 The reports contain forecasts of a wide range of variables;

in this work, I focus on GDP growth and the unemployment rate as these generally receive

attention from media and the general public. The data range from 2002Q3 to 2020Q2 as the

NIER began publishing quarterly forecasts in the third quarter of 2002. The forecast horizon

varies between reports, but all reports include forecasts for at least five quarters ahead. I

use data through 2019Q4 for evaluations in Section 5 to exclude the Covid-19 pandemic, and

study this episode separately in Section 6. I use the first available vintages for computing

nowcasting errors for GDP growth. The unemployment rate is not revised, so the choice of

vintage is immaterial for the results.

5 Results

In this section, I use the statistics described in Section 3 to evaluate the interval and den-

sity forecasts produced by the model for time-varying uncertainty. The evaluation period

is 2014Q1–2019Q4 and is pseudo-real-time; I recursively add a new quarter to the dataset,

re-estimate the model, and compute uncertainty forecasts. I let the maximum forecast hori-

zon be H = 5, which is the largest choice permitted by the data, so that I obtain predictive

distributions for the nowcast yT |T through the forecast five quarters ahead, yT+5|T . One

possible explanation for the potential success of time-varying uncertainties is that, uncondi-

tionally, the predictive distributions are thick-tailed. I compare the model with time-varying

uncertainty to predictive distributions and interval forecasts derived from normal and Stu-

dent’s t distributions, respectively, to give an indication of whether this conjecture has any

explanatory power. Both approaches take forecast errors at different horizons to be inde-

9The October publication was first released in 2017. I use forecasts from reports published in August
prior to its commencement.
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pendent. I estimate their unknown parameters—variance, and scale and degrees of freedom,

respectively—recursively using maximum likelihood for the out-of-sample evaluation.

5.1 GDP Growth

Figure 1 gives a first glance of the level of time variation of GDP forecast uncertainty.

Each panel presents the absolute value of the elements of ηt together with the full-sample

estimates of volatilities λ0.5i,t as well as real-time estimates. In the absence of correlation

across elements of ηt, that is if A = IH+1, λ
0.5
i,t is equal to the standard deviation at time t of

the ith component of ηt. The figure shows an increase in the volatilities around 2008–2009

with large nowcast errors through 2015. The peak of the volatility is estimated to be in

2011 in the midst of a period of large nowcast errors and substantial revisions of forecasts

at longer horizons. Revisions made in the first half of 2020 clearly stand out and display

magnitudes not previously seen.

5.1.1 Interval Forecasts

To assess the calibration of the intervals, I display empirical coverage rates in Figure 2. The

figure clearly shows that the intervals based on the normal distribution are underconfident, a

result that is in line with previous literature (Clements, 2004; Knüppel and Schultefranken-

feld, 2019). Intervals based on Student’s t do much better, with empirical coverage rates that

are never further from the nominal coverage rate than the normal distribution’s. Intervals

derived from time-varying predictive densities are even closer to the nominal levels, and are

never worse than intervals based on normality or Student’s t. Overall, all three types of

intervals are too conservative. Intervals with nominal coverage rate 90% have with only one

exception included every outcome.

While coverage rates assesses calibration in isolation, it is important to consider the

crucial balance between calibration and sharpness. To account for both of these concepts,

Figure 3 shows the intervals evaluated using the interval score (Gneiting and Raftery, 2007).
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Figure 1: Absolute values of components of ηt (bars), and volatilities (lines) for GDP growth.
Crosses denote real-time estimates of λ0.5i,t , whereas lines display full-sample (smoothed) es-
timates.
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Figure 2: Empirical coverage rates, GDP growth
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Figure 3: Interval scores, GDP growth
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Figure 4: Density scores, GDP growth

The interval scores in Figure 3 generally favor time-varying uncertainty. It is slightly

superior to the Student’s t intervals for 50% intervals at the initial two horizons, and with

an increased differential at the longest horizons. Time-varying uncertainty is somewhat

inferior to Student’s t for horizons two and three for 75% intervals, but better at all horizons

in the 90% case. The difference to the normality-based intervals is relatively much larger,

especially for 50% intervals. The results indicate that time-varying uncertainty and Student’s

t balance calibration and sharpness better.

5.1.2 Density Forecasts

The intervals in the preceding evaluation are all derived from full predictive distributions. To

analyze the performance of the estimated predictive distributions, I present the two popular

scoring rules log score and continuous ranked probability score in Figure 4.

The figure shows that the log score computed jointly over forecast horizons ranks time-

varying forecast uncertainty first. However, in contrast to the interval score, both the uni-

variate log score and the continuous ranked probability score favor Student’s t for horizons

beyond the first two. For the initial nowcast horizon, time-varying uncertainty is preferred

by both scoring rules. These results indicate that accounting for dependencies across hori-

zons improves the joint predictive distribution. Compared to normality-based predictive
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distributions, time-varying uncertainty is superior also for the univariate horizon-specific

scores.

5.2 Unemployment Rate

Figure 5 displays the nowcast errors and forecast revisions for the unemployment rate to-

gether with volatility estimates. Compared to Figure 1, the volatility estimates for the

unemployment rate to a lesser degree track the size of the revisions at longer horizons. The

discrepancy suggests that λ0.5i,t may not approximate the standard deviation of the forecast

revisions at longer horizons, indicating that the matrix A is likely not diagonal. The volatil-

ities show two historical peaks in 2006 and 2008 during periods of large nowcast errors and

major forecast revisions. Volatilities thereafter decreased until late 2019 when large revi-

sions inflated them anew, and in the beginning of 2020 the Covid-19 pandemic led to further

increases.

5.2.1 Interval Forecasts

Figure 6 reveals that intervals leveraging time-varying uncertainty have, for the most part,

been preferable according to the empirical coverage rates. Their empirical coverage rates are

closer to the nominal rates with only two exceptions. Both exceptions pertain to overconfi-

dence, with coverage rates that are somewhat too low relative the nominal rates. Student’s t

produces intervals that have better coverage properties than normality-based intervals, but

the differences are smaller for unemployment than for GDP growth (Figure 2).

Figure 7 presents the interval score, that balances calibration and sharpness, for intervals

for the unemployment rate. All three intervals obtain scores that are indistinguishable at

the nowcasting and one-quarter horizons, but diverge for subsequent horizons. Time-varying

uncertainty leads to the best score for all horizons and coverage probabilities. Student’s t

fares comparatively better than the normal distribution, but the difference is small for the

90% intervals.
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Figure 5: Absolute values of components of ηt (bars), and volatilities (lines) for Unem-
ployment rate. Crosses denote real-time estimates of λ0.5i,t , whereas lines display full-sample
(smoothed) estimates.
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Figure 6: Empirical coverage rates, Unemployment rate
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Figure 7: Interval scores, Unemployment rate
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Figure 8: Density scores, Unemployment rate

5.2.2 Density Forecasts

The log and continuous ranked probability scores for the unemployment rate forecasts are

displayed in Figure 8. In contrast to the results for GDP growth (Figure 4), time-varying

uncertainty uniformly leads to better scores. The difference between the three methods is

minor for the first two horizons in terms of the univariate scores, but for longer horizons

the scores start to diverge. The joint log score shows a greater difference between time-

varying uncertainty, and normal and Student’s t than what the univariate scores show. This

increased differential suggests that correlations between forecast errors enhances the joint

predictive distributions.

5.3 Marginal Likelihood

The results for GDP growth and unemployment in the preceding sections show that time-

varying forecast uncertainty leads to statistical improvements for a variety of statistics. In

this section, I compare the baseline model for time-varying uncertainty described in Section

2 to restricted alternatives.

The model from Section 2 includes two key features that the constructions based on

normal and Student’s t distributions lack: correlation between horizons, and time-varying
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Table 1: Log marginal likelihoods

Full model No correlation No time variation

GDP growth

105.0 82.0 -9.2

[105.0, 105.1] [82.0, 82.0] [-9.2, -9.2]

Unemployment rate

355.6 -62.7 305.4

[355.6, 355.7] [-62.7, -62.7] [305.4, 305.4]

Note: The ‘no correlation’ alternative is the model equipped with
the restriction that A = IH+1, whereas the ‘no time variation‘ alter-
native has βi = 0. The reported range, in brackets, is the minimum
and maximum log marginal likelihoods obtained from 10 indepen-
dent runs. The models are estimated using 100,000 draws in the
MCMC algorithm, where the first 50,000 are discarded. Marginal
likelihoods are estimated using bridge sampling with 100,000 im-
portance sampling draws from a multivariate t distribution with 10
degrees of freedom and mean and scale equal to the sample mean
and covariance based on the first 25,000 retained MCMC draws.
The estimation sample is 2002Q3–2019Q4.

variances. Table 1 presents marginal likelihoods for the baseline model, and two restricted

variants that shut off correlations and time variation, respectively. The former model restricts

A = IH+1 so the nowcast error and revisions are conditionally independent, and the latter

restricts βi = 0 to remove time-varying variances. Priors are kept unchanged elsewhere.

The marginal likelihoods in Table 1 show that the model without restrictions receives

the largest marginal likelihood for both GDP and unemployment. The table shows that

the relative importance of correlation and time variation is different for the two variables.

Restricting the correlation, that is A, is less consequential for GDP growth than restricting

the time-varying variances to be constant as indicated by the higher marginal likelihood

for the ’No correlation’ alternative. The result is the opposite for the unemployment rate;

restricting correlations reduces the marginal likelihood more than restricting time variation.

These results state more formally what Figure 4 and 8 also suggest: For the unemployment

rate, the slope of the joint log score curve is notably flatter than the slope of the univariate
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log score curve, whereas for GDP growth the slopes are almost the same. This indicates

that the joint log score for GDP growth is close to a joint log score computed assuming

independence across horizons. The joint log score for the unemployment rate is much further

from the average of the univariate scores, implying that a sizable part of the joint log score

improvement can be attributed to correlations between forecast errors. Thus, the results of

Bayesian model comparisons and density forecast evaluations both point towards a larger

importance of correlation between horizons for the unemployment rate. More generally, the

results make it clear that forecast errors for different variables may have different properties,

and thus potentially also require different treatments.

6 Forecast Uncertainty During Covid-19

The rapid spread of the Covid-19 pandemic caused an economic situation that was widely

described as extraordinarily uncertain. The NIER published regular forecasts on December

19, 2019, April 1, 2020, and June 17, 2020. Because of the quickly changing circumstances,

an updated forecast was released April 29, 2020. The peak of the downturn was expected

to hit during the second quarter of 2020, and the forecasts for quarterly GDP growth were

revised from 0.2 (December) to -6.3 (April 1) to -11.2 (April 29) to -9.5 (June 17). For the

unemployment rate, the forecast changed from 7.2 (December) to 8.9 (April 1) to 11.5 (April

29) to 8.8 (June 17).

The forecasting environment was undoubtedly perceived to be incredibly uncertain. In

the Swedish Economy Report published on April 1 (National Institute of Economic Research,

2020), the NIER wrote:

The global economy is expected to contract in 2020, and Swedish GDP falls by

more than 3 per cent this year in the NIER’s base scenario. However, there is

extreme uncertainty about future developments.

As another sign of the heightened uncertainty, Sveriges Riksbank decided to publish two
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scenarios instead of a single forecast in its Monetary Policy Report published on April 28

(Sveriges Riksbank, 2020), writing:

The great uncertainty over the course of the pandemic means that the Riksbank,

in this report, has chosen to discuss developments on the basis of two different

scenarios, rather than a single specific forecast.

Similarly, the European Central Bank (ECB) decided not to present uncertainty intervals

around their projections in their June projection (European Central Bank, 2020). They

justified the decision saying that:

This reflects the fact that the standard computation of the ranges (based on

historical projection errors) would not, in the present circumstances, provide

a reliable indication of the unprecedented uncertainty surrounding the current

projections.

Because the ECB’s uncertainty intervals are based on unconditional moments of the

forecast error distribution, they would severely underestimate the prevailing uncertainty.

Figure 9 and 10 show predictive densities incorporating time-varying uncertainty for GDP

growth and unemployment, overlaid with predictive densities obtained from fitting zero-

mean normal distributions to the historical forecast errors. The figures show the tremendous

impact the pandemic-induced revisions had on forecast uncertainty. In December, the pre-

dictive densities for both GDP growth and unemployment were more concentrated than the

corresponding densities based on normal distributions, indicating that forecast uncertainty

was lower than usual. In April, the rise in uncertainty was remarkable, particularly for the

GDP growth forecast.10 The unconditional normal distribution predictive density was, by

construction, unaffected by the large revisions, but nevertheless gave the visual impression of

a forecast that was much more certain than it arguably was. Forecasts for GDP growth that

were made during the pandemic and that employed time-varying uncertainty were better

10The rise in forecast uncertainty was counteracted by a decrease in forecast horizon between December
and April. Despite the decrease in forecast horizon, uncertainty increased.
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Figure 9: Predictive distributions for GDP growth in 2020Q2. Solid lines show unconditional
predictive distributions based on normality, vertical dashed line shows the first published
outcome. The December forecast is a h = 2 step forecast, April forecasts are h = 1 forecasts,
and the June forecast a h = 0 forecast (nowcast).

according to the logarithmic score, as evidenced by higher predictive distributions at the

value of the outcome. The forecast errors were unusually large, which was anticipated using

time-varying uncertainty. For the unemployment rate, the normality-based unconditional

uncertainty forecasts scored better for the April 1 and June 17 forecasts. The April 29

forecast, however, was more than 7 standard deviations away from the outcome. The de-

scription of forecast uncertainty using unconditional levels of uncertainty was ex-post clearly

inappropriate for the April 29 forecast.

To see the impact of the revisions between successive forecasts, Figure 11 and 12 plot

the 50%, 75% and 90% intervals for GDP growth and unemployment. The left panels

show intervals based on time-varying uncertainty, and the right panels show unconditional
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Figure 10: Predictive distributions for the unemployment rate in 2020Q2. Solid lines show
unconditional predictive distributions based on normality, vertical dashed line shows the first
published outcome. The December forecast is a h = 2 step forecast, April 1 a h = 1 forecast,
and April 29 and June forecasts are h = 0 forecasts (nowcasts).
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normality-based uncertainty intervals.

Intervals based on time-varying uncertainty convey the message that the forecasts made

in April were unprecedentedly uncertain, saying that the margin of error was expected to

be much higher than otherwise. For the April 1 forecast, the 90% interval for GDP growth

in 2020Q2 ranged from approximately -1 to -11. While the intervals for 2020Q2 are wide,

the fans expand even further for the later half of 2020. Since gauging the present was

extremely challenging in April, it is not surprising that the uncertainty around the forecasts

for the remainder of 2020 is so large so as to essentially say that anything is possible.

The corresponding normality-based intervals for the April 1 GDP forecast are barely visible

because of the large scales. The revisions for the April 29 forecast for both GDP and

unemployment increased the level of uncertainty further, extending the range of outcomes

that were plausible given the size of the revisions that had occurred.

A major challenge during the initial phase of the pandemic was that severe economic

effects were widely expected, but available traditional data sources did not show any signs

of an impending crisis. Figure 9–12 illustrate the benefit of basing the estimation of un-

certainty on revisions—because revisions are forward-looking, the measure of time-varying

uncertainty can react in real time as soon as changes are made to the forecasts. Mapping

qualitative descriptions of uncertainty to quantitative measures is certainly challenging, but

the estimated time-varying forecast uncertainty appears to accompany the sentiments voiced

by the NIER and the Riksbank well insofar as painting a clear picture of unparalleled levels

of uncertainty.

7 Conclusion

I have studied whether time-varying uncertainty is useful for describing the uncertainty

surrounding the National Institute of Economic Research’s forecasts for GDP growth and

unemployment in Sweden. My results indicate that the answer is yes, time-varying uncer-
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Figure 11: Fan charts for GDP growth. The shaded areas display 50%, 75% and 90%
pointwise intervals.
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Figure 12: Fan charts for the unemployment rate. The shaded areas display 50%, 75% and
90% pointwise intervals.
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tainty improves the statistical properties of uncertainty intervals and predictive distributions.

I find enhancements with respect to multiple statistics and for both variables, GDP growth

and unemployment, that I study. My sample starts in 2002 and is thus relatively short. The

results should be particularly encouraging for those forecasters and policy institutions, of

which there are many, that lack an extensive record of quarterly forecasting errors to rely

on for estimation.

I provide additional evidence of the relevance of time-varying uncertainty in an applica-

tion to the Covid-19 pandemic. The application highlights a policy value of the approach

that is more communicative than statistical. A challenge for forecasters in times of distress is

to convey to the public that their forecasts are more uncertain than what would be expected

on average. By showing unconditional, normality-based uncertainty intervals based on past

performance, average forecast uncertainty becomes the focus although average uncertainty,

as during the Covid-19 pandemic, may be a poor indicator for the prevailing level of un-

certainty. In contrast, my application shows that time-varying uncertainties react forcefully

and in real time because of the large revisions caused by the pandemic.

A time-varying characterization of forecast uncertainty therefore appears to behave pre-

cisely as desired: During the last five years, forecast uncertainty was relatively speaking

lower, and in the evaluation during this period the approach based on time-varying uncer-

tainty resulted in better statistical properties. However, when the pandemic hit and caused

an extraordinary level of uncertainty, the method immediately picked this up to yield un-

precedented levels of uncertainty. As the method brings both statistical and communicative

improvements, it should therefore be an appealing tool for many forecasters.
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A Econometric Details

A.1 Prior Distributions

The unknown parameters of the model are θ = {λ1:H+1,0, β, a}, where

λ1:H+1,0 = (λ1,0, . . . , λH+1,0)
′

β = (β1, . . . , βH+1)
′,

and a is the lower triangular part of A, that is,

a = (a2,1, a3,1, . . . , aH+1,1, a3,2, . . . , aH+1,2, . . . , aH+1,H)′.

Because of a limited amount of data, I use weakly informative priors. The prior distributions

for the intercepts λi,0 are independent normal distributions λi,0 ∼ iid N(0, 10). For the

loadings βi, I use βi ∼ iid N(0, 0.5). For the lower triangular elements of a, I let aj ∼

iid N(0, 1).

A.2 Estimation Using Markov Chain Monte Carlo

Estimation proceeds using a standard Gibbs sampling algorithm that has as its stationary

distribution

p(a, β, λ1:H+1,0, λ0,1:T |η),

where λ0,1:T = (λ0,1, . . . , λ0,T )′. At iteration r, the Markov Chain Monte Carlo (MCMC)

algorithm cycles through the following steps.

Sample a Given λ1:H+1,0, β and λ0,1:T , the equation-specific volatilities λi,1:T are known.

A sample of the full vector a can be obtained by recursively sampling parameters equation
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by equation, see, for instance, Cogley and Sargent (2005). To provide some intuition, the

first equation in (2) is

et−1|t−1 = exp(0.5λ1,t)ε1,t,

and so ε1,t is known conditional on exp(0.5λ1,t). The second equation is

µt|t = a2,1 exp(0.5λ1,t)ε1,t + exp(0.5λ2,t)ε2,t.

Multiplying both sides of the equation by exp(−0.5λ2,t) yields a standard homoscedastic

Bayesian linear regression model. The error ε2,t is also known given a2,1. Sampling continues

analogously for the remaining elements of a equation by equation.

Sample (λ1:H+1,0, λ0,1:T ) Using the Omori et al. (2007) refinement of the Kim et al. (1998)

mixture approximation, the log of the squared forecast errors can be written as

η2i,t = λi,0 + βiλ0,t + ε2i,t

≈ λi,0 + βiλ0,t +mri,t + sri,tνi,t, νi,t ∼ N(0, 1),

where ri,t ∈ {1, 2, . . . , 10} are mixture indicators and mri,t and sri,t are the means and stan-

dard deviations of the mixtures. The indicators enable the use of a conditionally linear

state-space model with normally distributed errors although log(ε2i,t) is non-normally dis-

tributed.

Let ỹi,t = log(η2i,t)−mri,t , and ỹt = (ỹ1,t, . . . , ỹH+1,t)
′. The mixture approximation yields

the state-space model

ỹt = Zλt +Gtεy,t

λt = λt−1 + Lελ,t,
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where εy,t ∼ iid N(0, IH+1) is independent of ελ,t ∼ iid N(0, 1), and

Z = (β, IH+1), Gt = diag(sr1,t , sr2,t , . . . , srH+1,t
)′

L =

 1

0H+1×1

 ,

λt =



λ0,t

λ1,t
...

λH+1,t


, λ0:H+1,0 ∼ N(a0, P0), a0 = 0H+2×1,

P0 =

 0 01×H+1

0H+1×1 10IH+1

 .

A simulation smoother, see Durbin and Koopman (2002), conditional on the mixture indica-

tors ri,t is used to produce a draw from the desired posterior distribution. The mixture indi-

cators are sampled in an auxiliary step that immediately precedes the simulation smoother.

For details, see Kim et al. (1998); Del Negro and Primiceri (2015).

Sample β From the mixture formulation of the state-space model,

log(η2i,t)−mri,t − λi,0
sri,t

= βi
λ0,t
sri

+ νi,t.

Given the mixture indicators ri,t, the volatility intercepts λ1:H+1,0 and the common volatility

λ0,1:T , Bayesian linear regression can again be used to sample from the posterior of βi.

A.3 Posterior Simulation of Forecast Errors

Given a draw from the MCMC output, the log-volatility factor is simulated forwards and

future nowcast errors and forecast revisions simulated given the future level of volatility.
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Finally, (1) is used in order to move from p(ηT+1:T+H+1|η1:T ) to p(eT |T , . . . , eT+H|T |η1:T ). The

steps of the algorithm are:

1. Given λ0,T , simulate {λ0,T+i}Hi=1 using (3) and form Λt for t = T + 1, . . . , T +H + 1

2. Given A and Λt simulate ηt by drawing εt ∼ N(0, IH+1) and using (2) for t = T +

1, . . . , T +H + 1

3. Given {ηT+i}H+1
i=1 , compute {eT+i−1|T}H+1

i=1 using (1)

A.4 Evaluating Density Scores

The log score can be efficiently estimated by (Krüger et al., 2020)

LSh =
1

Th

Th∑
t=1

L̂St,h

L̂St,h = − 1

R

R∑
r=1

log
[
f(et|t−h|θ(r), λ(r)1:H+1,0, λ

(r)
0,1:t−h, η1:t−h)

]
,

(4)

where f(et|t−h|θ(r), λ(r)1:H+1,0, λ
(r)
0,1:t−h, η1:t−h) is the density of a normal distribution with mean

0 and standard deviation σ
(r)
t|t−h. An explicit expression for σ2

t|t−h is provided in Appendix

A.5.

Analogously, the continuous ranked probability score can be computed as (Jordan et al.,

2019)

CRPSh =
1

Th

Th∑
t=1

ĈRPSt,h

ĈRPSt,h =
1

R

R∑
r=1

σ
(r)
t|t−h CRPS

(
Φ,

et|t−h

σ
(r)
t|t−h

)

CRPS (Φ, z) = z (2Φ(z)− 1) + 2φ(z)− 1√
π
,

where Φ and φ are the standard normal cumulative and probability distribution functions,
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respectively.

Both scores are univariate and marginal with respect to the horizon, and neglect the

joint behavior of predictive distributions across horizons. Multiple horizons can be evalu-

ated jointly by changing the univariate predictive distribution in (4) to the joint predictive

density. Appendix A.5 provides an expression for the conditionally normal joint predictive

distribution of (et|t, . . . , et+H|t)
′.

A.5 Conditional Variance of Future Forecast Errors

Using the law of total variance,

Σt+h|t ≡ Var(ηt+h|θ, λ1:t, η1:t)

= E [Var(ηt+h|θ, λ1:t, λt+1:t+h, η1:t)|θ, λ1:t, η1:t]

+ Var

[
E(ηt+h|θ, λ1:t, λt+1:t+h, η1:t)︸ ︷︷ ︸

=0

|θ, λ1:t, η1:t
]
.

The first term is

E [Var(ηt+h|θ, λ1:t, λt+1:t+h, η1:t)|θ, λ1:t, η1:t]

= AE (Λt+h|θ, λ1:t, η1:t)A′. (5)

The ith diagonal element of Λt+h is exp(λi,t+h) = exp(λi,0 + βiλ0,t+h), and so

λi,t+h = λi,0 + βiλ0,t+h

= λi,0 + βi

(
λ0,t +

h∑
s=1

νs

)
.
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The conditional distribution of the expression is N(λi,0 + βλ0,t, hβ
2
i ). Hence, the conditional

distribution of exp(λi,t+h) is log-normal and its conditional expectation is

E (exp{λi,t+h}|θ, λ1:t, η1:t) = exp

{
λi,0 + βλ0,t +

hβ2
i

2

}
. (6)

The conditional variance can thus be computed using (5) and (6), whereby

ηt+h|θ, λ1:t, η1:t ∼ N(0,Σt+h|t).

Let Σ
(i,j)
t+h|t denote element (i, j) of Σt+h|t. The forecast error et+h|t is conditionally normal

with mean zero and variance

σ2
t+h|t ≡ Var(et+h|t|θ, λ1:t, η1:t) =

h∑
j=0

Σ
(j+1,j+1)
t+h+1−j|t.

Since ηt and ηs, t 6= s, are conditionally independent and normally distributed, their joint

distribution is normal. Because forecast errors et+`|t and et+h|t are just linear combinations of

η, they are also jointly normal. The mean vector is zero, and element (`, h) of the conditional

covariance of (et|t, . . . , et+H|t)
′ is

Cov(et+`|t, et+h|t) = Cov(
∑̀
j=0

ηt+`+1−j,j+1,
h∑
i=0

ηt+h+1−i,i+1)

=
∑̀
j=0

Cov(ηt+`+1−j,j+1, ηt+`+1−i,j+h−`+1)

=
∑̀
j=0

Σ
(j+1,j+h−`+1)
t+`+1−j|t .
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