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Abstract

We generalize the short term memory test of an ARMA model. pre-
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1. INTRODUCTION

How far into the future can changes in general business activity be forecasted and
how much information is there in the forecast? An F-test of Parzen's prediction
variance horizon (Parzen. 1982) of an ARMA model vields the number of steps
ahead that a forecast contains information. In analysing the Finnish GDP. Oller
(1985) found that a three-vears ahead forecast is statistically informative: for a
ten-vears ahead forecast there are strong doubts about both model memory and
model validity. The classification of time series as possessing no memory {or white
noise), short memory and long memory is widely explored in the literature. see
Parzen (1981b). As far as forecasting is concerned it can be said that a time series
has a short memory if it is only partially predictable into the future: long memory
if it can be predicted far or indefinitely into the future: and no memory if the
future cannot be predicted at all from the past.

As it is of both practical and theoretical interest to know the i-step ahead
forecastability of a series, it has been suggested by Oller (1985), that the short
memory of a series is the last step for which a forecast information measure is
significantly greater than zero. This is a statistical rule that makes it possible
to determine the horizon [ = L after which the forecasted series contains no
more information. In the present study we generalize this decision rule to vector
autoregressive moving average, VARMA processes; and we construct an equivalent
of this information measure for multivariate time series.

Qur reasoning is illustrated using a simple vector autoregressive moving av-
erage model for quarterly OECD demand and quarterly Swedish exports. We

found that the forecast horizon of Swedish exports is extended by relying on its



relationship to OECD demand.

2. THE DECISION RULE

2.1. The Univariate case

Let Z, be a scalar valued. stationary time series. ¢t = 1.2.....T. Then there exists

an ARMA(p, q) model
6(B)Z, = 8(B)a,, (2.1)

where ¢ and 6 are polynomials in the back shift operator B with ail their roots

outside the unit circle. and a, is i.i.d. noise. The Wold transformation of {2.1) is
Zy = v(B)a,, w(B) =0 (B)8(B). (2.2)

The i-step ahead forecast error variance is:
V() = 021+ v + .~ uly). (23)

whereas the total variance of Z, is:
2 = ]
of =03 3 vi. (2.4)
=0

With analogy to the R? of ordinary regression. see Nelson (1976), Parzen (1982),
Harvey (1984) and Oller (1985), we define the fraction of the variation in Z, that
can be forecasted up to the horizon { as:

Vi)

m=1-25 (2.5)

It is well known that. in ordinary regression. the hypothesis that the true vaiue

of R? is zero can be tested by comparing the F statistic:
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N—k-1 R
£ k 1 - R?

to the critical values of Fisher’s F-distribution. with k and N — &k — 1 degrees of

(2.6)

freedom respectively. Substituting an estimated [(1), [ (1), for R? and p+q for k

we get:

 N=p=g-~-1 ()
p+q 11
which may be considered as approximately F-distributed. see Nelson (1976). Us-

F

(2.7)

ing resuits from Oller (1985) the statistical decision rule may be formulated as

follows: the short memory of model (2.1) is that { = L for which:

)2 we JL+1) <w (2.8)
with r as the significance level and

F(p+q N-p—q-1)

[Flp+a,N —p—q—1)+ ¥=z=2=il’

W =

2.2. The multivariate case

Now let the stationary vector time series Z, of order (p, q), be represented by the
VARMA model, see Tiao and Box (1981):

Z = ‘I’;Zg-; + ...+ @,,Zg_p +=n + e;fh__l"i‘... + qu t=0,1,2... (210)

—-q

where Zy = (Zy4,....Zk,) is a (K x 1) random vector, ®; and ©); are fixed

(K x K) coefficient matrices. The 1, = (m1,, 724, k) is a K-dimensional
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white noise or tnnovation process, subject to: E(n,) =0 for all i, E(n,7,) = Z,
fort =s, E(nm,) =0fort # s and %, is a non-singuiar matrix that may be
diagonalized using a Cholesky decomposition. Suppose that each individual Z,,
is a non-deterministic stationary series: the generalization of the Wold's decom-

position theorem then yields:

Z; = c(B)n,, (2.11)

where c(B) is a (K x K) matrix polynomial in the back-shift operator B. with
typical element:

es(B) =Y cymB™ (2.12)
m=()
The typical series in (2.11) is actually a weighted sum of current and past values

of each of the K uncorrelated white noise series 1,, so that:

Zig =Z CitmT1 t—m+ z Ci2mM2,t-m + ... F Z GKmMt-m- (2.13)
m m m

For ¢(B) of (2.11) there exist matrix polinomials ®(5) and ©(B) of appropriate
dimensions such that:

&(B)c(B) = O(B), (2.14)
where $(B) =fp: ¢;B?, B(B) =§ 0;B7 and c(B) =§ c;B? as above so that
j=o =0 i=0

®(B) is taken to possess an inverse. Now consider Z,(l) as the forecast of Zi,
made at the time origin ¢, [ periods ahead. Then Z(l) is based on the information
set I, = {Z,—,; j > 0}. Thus:



Zt(l) = Z)\j.lzt-;
=0
A(B)Z,

> c.Bn,, (2.13)
J=0

]

where A;; is a K x K matrix, and (2.15) represents infinite sums in 7,. The error

series of the l-step ahead forecast is known as:

€t = Loyt — Z:(l), (2.15)

and the covariance matrix of this forecast error is:

-1
V() =Y e..c), (217)
=0

which is a multivariate equivalent of (2.3). As in the univariate case it is of
interest to know V/(l) for a single series Z,,. Since Z,, comes from the system
Z,, its forecast variance will potentially be affected by other series in the system.

Using the weighted sum representation in (2.13) the respective error variances are

given by:

=1 =1

iI=1
2 2 2
14200) Om D G+ Ona D Chaj+ 02k I Cig
j=0 j=0 j=0

-1 i=1 i—1
VOW) = oh 3 j+om Y G+ ouk 3 Bk
=0 j=0 i=0



1k -1 -1
K 2 2 2 2 2 2
17 )(l) = o5 z Ci1j = Tna Z Ciaj = Ok Z Chx.i-
=0 1=0 =0

Denoting by V*(I) the i-step ahead error variance of the i-th component of Z,, we

may write compactly:

-1 K
VO =" & ok, i=1,... K. (2.18)
J=0k=1

For the short term forecast of horizon i, a measure of the amount of information

for the i-th component of Z, is

&) =1-20——, (2.19)

which is the muitivariate analogue of (2.5). Using the same reasoning as in the
univariate case, we substitute an estimated &(I), £(1), for R? in (2.5) and get, for

a single series Z,,, with v; as the number of estimated parameters:

N-y—1 &)
vi  1-&@)
and the same procedures follow as in the univariate case. In analogy with the

F.= (2.20)

approximation by Nelson (1976) in the univariate case, (2.20) may also be seen
as approximately F-distributed. A reason is that the second term of the right
hand side of (2.20) is just a quotient of two sums of squares which may be seen as
approximately independent y? variates with v; and N — 1; — 1 degrees of freedom.

respectively.



3. OECD demand and Swedish exports

For an illustration of the measurement of the amount of information in a model.
we use data on total OECD demand and quarteriy Swedish exports of goods.
see Main Economic Indicators, OECD. As a proxy for OECD demand we have
chosen quarterly total industrial production. There are 100 observations ranging
from the first quarter of 1970 to the fourth quarter of 1994. The idea is simply to
check if Swedish exports can be better predicted if we take into account influences
from other OECD countries. We start by analysing both variables separately in
a univariate scheme, where an arsenal of model selection criteria is used. see for
example Granger and Newbold (1986) or Vandaele (1983). Secondly, a muitivari-
ate analysis is conducted; we also test for cointegration using the Johansen (1995)
cointegration test. Plots of the indexes of both series, with 1990 as a reference
year, are provided in Figures Bl and B2 in the appendix.

There are two dominant components in both series: growth and a seasonal.
We used Hylleberg, Engle, Granger and Yoo (1990) to test for unit roots on trend
and seasonal frequencies. This analysis suggests that one ordinary difference is
enough to stationarize both series, and the seasonal component may be modelled
by four dummies. We also tested for cointegration using the Johansen Likelihood
Ratio test. We found the eigenvalues (Ay; A;) = (.0452;.0009) with Likelihood
Ratio = (4.626;.089) and 5% critical values (15.41; 3.76) respectively. This means
that cointegration is rejected at the 5% level.

We first specify an univariate model for Swedish exports. After one differencing

an AR(1) model with four seasonal dummies., D;, adequately describes the data.



The estimated model is (with standard errors 1o parentheses::

SWEXPORTS, = 10.2-.495 «SWEXPORTS,-,
(1.310) (.098)
— 7.07 *Dy— 9.67 =Dy~ 18.46 *Ds (3.1)
(2.63) (1.421) (1.763)
R* = 819.R%qdj = 811

The resuits of the Ljung-Box Q-test, in Table 1 below. show little evidence
against the null hypothesis of no serial autocorrelation of the residuais from the

estimated model (3.1) above.

Table 1: Ljung-Box Q Statistic

Lag LB-Q Lag LB-Q

1 .25 13 19.04
2 L.21 14 19.04
3 1.40 15 22.44
4 9.78 16 24.10
5 9.83 17 24.54
6 11.24 18 26.35
7 11.27 19 26.90
8 12.23 20 27.12
9 12.26 21 27.13
10 16.18 22 27.25
11 18.16 23 27.34
12 18.81 24 27.98




Next the series is modelled as a bivariate VAR(1) where. again. first differences
of the individual series are taken to induce stationarity; the seasonal patterns that

characterize these series is again expressed in the dummies. The estimated system

of equations is:

OECD,

.348 «OECD,_,+ .006x SWEXPORTS,-,
(:099). (023)

.413) (.
R?* = .90, R%adj = .894

+ 6.201 — 8.845 *Dy— 5.231 *Dy— 9.853 %D
( 954) (.402) (.540)

SWEXPORTS, = 1201 «OECD,_,— 547 *SWEXPORTS,_,
(:411) (.096)

+ 13.640 — 15.846 Dy — 12.454 *Dy— 22.734 %
(1.720) (3.953) {1.665) (2.238)

834, R%adj = 825 (3.2)

R2

As could be expected (3.2) shows no feedback from Swedish exports. Now to use
results of models (3.1) and (3.2) for testing the short memory of Swedish exports
we need the following results: for an univariate AR(1): AZ, = 91 AZ,_| +m, it is
known that ¢; = ¢*~, ¢y = 1, hence
1-1 o
§W=1-13 (&) 2 %")] : (3.3)
i =0
For the determination of the ¢; in a given ARMA(p, ), see Lyhagen (1997). Exact
expressions for ¢, ; in (2.19) can be found for a VARMA by using a generalization
of the Yule-Walker equations. Derivations for a bivariate VAR(1) is provided in
the appendix, and the same procedure may be used for higher dimension models.
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Thus. for Swedish exports we obtain:

-1 =1
2
O & Uy b, 2 W0

Mt = e J.‘—
Gl =1- 2 22,2 2y (8.4)
The Z UJ - T = LJ'

where UJ‘ = Uj_z(qf)u@zl = @11@22) -+ U,;d{ﬁn -+ 0522), Trf = 1/;-2{@12@21 - 011@22} -
Vi-1{¢11 + ¢22) and the @;; are simply autoregressive coefficients in the bivariate
VAR(1). The values of the estimated information measure of Swedish exports are

given in Table 2 below for both the univariate and the bivariate model.

Table 2: Estimates of the information measure of Swedish exports in the

univariate and the bivariate cases.

l Univariate Bivariate

Model (311 Model (3.2)
1 .245 .699

2 .060 .664

3 - 075

4 - .044

5 " y

6 . .

In the univariate case the short term memory is statistically informative up

to two periods ahead. In the multivariate case the forecastability of Swedish

11



exports may be extended to four periods ahead; in either cases the critical value

is wos = .040.

4. Conclusion

The univariate test for short memory in Oller (1985) is generalized to the case
of multivariate :im'e series. The concept is an analogy to the R? in ordinary
regression. We have established a statistical rule to determine the horizon { = L
after which the forecasted series contains no more information.

We compare the forecast horizons in the univariate and in the muitivariate
cases. A theoretical expression of the information measure is derived; real life
data is then used to illustrate the test for short memory. For this, Swedish exports
is modelled, first univariately and then by relating it to foreign demand. In the
univariate case the forecast horizon covers just two periods ahead. In the bivariate
setting this forecast horizon is extended to four periods ahead. Next one wouid
like to derive the short term memory measure for cointegrated variables and apply

it to real life data with more than two variables.
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APPENDIX I

Consider the staticnary vector time series of order {p, q) as defined in (2.10)

Li=D1Z 1+ +PpLip + 1+ O Ot =0.1,2... (41)

We know that the covariance matrix of the forecast errors is:

V() =§ c;Ec (4.2)
=0

The [-step ahead error variance of the i-th component of Z, is:

-1 K "
VO =3 ok, i =1, K. (4.3)

i=Ok=1
i ; i ; 2
As mentioned in the text, the explicit expression of the component c; ; be-

comes quite complicated with the order of the VARMA process. However using
a generalization of the Yule-Walker equations these expressions can be found re-
cursively. With analogy to the argument for the univariate case given in Box and

Jenkins (1970) the c; matrices may be obtained by writing:

Ze = (¢(B)"O(B)n (4.4)
= 3 ¢Bn, (45)
j=0

Hence in a VARMA(p, g), the following recurrence relationships for the c; ma-
trices are deduced by equating powers in (4.4) and (4.5) so that:

= ¢,-6,
C2 = e, +Py,—
€ = @Cjoi+ . + B Cip — 5, (4.6)
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In (4.6) we note that the moving average coefficients vanish for j > g. Consider

now a stationary bivariate VAR(1):

21y = ¢ulig+ 02y M (4.7)

Zoy = tnZiy +OnZas) ~ N (4.8)
_ |: l—¢n8 —¢128

=
e (4.9)
—¢nB 1-—¢xnB a2t

Suppose now that we are interested in the single series Z,,, which in the examples

which can be written in a matrix form as:

VAR
Zas

above may stand for the Swedish export. Thus from (4.9) we get:

Zoe = (¢nuB)[(1 - ¢uB)(1 - 6B) - bron B me
+(1 - ¢uB) [(1 —¢uB)(1 - ¢22B) — ¢12¢'2le] - Mat

U(B)n + V(B)na, (4.10)

where U(B) = (¢a18) [(1 — o0uB)(1 — ¢22B) — $12¢218% 'and V(B) = (1 —
¢1nB) [(1 ~ $uB)(1 — ¢p22B) — P12021B?]"" respectively. Both U(B) and V(B)
can also be represented as infinite sums in the back-shift operator B. Thus by

equating powers of B we obtain:

Ui = ¢nand Vi =¢y+ ¢
Uz = éaléu +é2) and V2 = ¢13 + 851 — dudn + Vilén + on)
Us = ¢n(d2dn — dudn) + én(én + o)’

= Ui(énzén — dudn) + Va(én + ¢2)
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and V3 = Vi(¢12021 — o11¢22) + Va(¢11 — 022)
Us = U120 — 011022) + Us(¢11 — 022)
and Vi = Wo(¢n2021 — o11¢22) = Va(¢1 ~ o22)

U;

Uj-2{$r12021 — o9z} + Uj-1(011 — 022)
and V; = Vi_a(dr2ém — duga) + Vioi(dn + o),

so that in this case, for a four period ahead forecast we obtain:

o (1 + U+ U3+ UR) +03, (1 +VE + VE + V3)

£(4)=1- = —
0’%“ Eﬁ UJ + g-,zm %:‘0 1/12

with Up=1and V= 1.
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Fig. A1: Demand of Goods from all OECD Area

110 -

e i

100 —

Index

I
|
|

i 1 | | i | i i i |
Quarters 10 20 30 40 50 60 70 80 90 100

18



Fig. A2: Total Swedish Export of Goods
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Svenskt sammandrag

Hur man testar lingden pd det korta minnet i en V4ARMA-process

Hur l&ngt in i framtden kan man prognosticera konjunkturfdrioppet och hur mycket
information finns det i prognosen? I Oller (1985) forslas ant man anvéinder sig av Parzens horisont
fér prediktionsvariansen i en ARIMA-modell och ett F-test. I ibid. befinnes prognoser pi
Finlands BNP tre 4r framit i tiden vara statistiskt informativa; trots en ritt klar tiodrig
devalveringscykel stiller man sig tveksam till lingre prognoser, bade av statistiska skil och pga.
osikerhet gillande modellens invarians i tiden. En modell kan sigas ha inger minne, kort minne
eller/och ldngr minne. Det sista brukar forknippas med enhetsrétter och eventuellt med ARFIMA-
modeller och behandlas inte hér.

Det kan sigas vara bide av praktiskt och av teoretiskt intresse att kinna en series
prognostiserbarhet. I Oller (1985) fSresids att minnet stricker sig till det sista steget som
statistiskt signifikant minskar prognososikerheten. Fo&r detta Z4ndamal anvindes ett
informationsmitt som piminner om fbrklaringsgraden i en regressionsekvation och som &ven
testas med samma test. [ fireliggande uppsats generaliseras mattet och testen till &ven gilla
vektoriala tidsserier, dvs. ¥4ARMA-processer.

Metoden illustreras med data §ver OECD:s efterfrigan pa svensk export. Porgnosminnet kan
forlingas med hjilp av information om efterfrigan, jimfbrt med att man enbart anvidnder
information om exportens egen historia.
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