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 Abstract 

While using detailed firm-level data from the private business sector, 
this study identifies two empirical puzzles: (i) returns-to-scale (RTS) 
parameter estimates rise at higher levels of data aggregation, and (ii) 
estimates from the firm level suggest decreasing returns to scale. The 
analysis shows that, although consistent with rising estimates, the Basu-
Fernald (1997) aggregation-bias effect does not drive this result. Rather, 
rising and too low returns-to-scale estimates probably reflect a mixture 
of random errors in factor inputs. It turns out, in fact, that a 7.5-10 
percent error in labor (hours worked) can explain both puzzles. 
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1  Introduction 

In recent years there has been a massive amount of research on the procyclicality of 
measured productivity. This strand of research is of considerable importance since it 
has large implications for macroeconomic modeling in general and the relative merits 
of different models of the business cycle. Fernald and Basu (1999), for example, tried 
to determine the empirical relevance of a number of competitive explanations for why 
productivity normally rises in business cycle upturns and falls in downturns. Using a 
standard production-function framework and U.S. manufacturing data, they found that 
varying factor use and resource reallocation are of crucial importance for procyclical 
productivity. A similar result was found by Basu and Kimball (1997). 
 
Caballero and Lyons (1992) showed that empirical estimates of the degree of internal 
returns to scale (RTS) are, in general, larger for manufacturing as a whole than for 
two-digit industries. Caballero and Lyons interpreted this finding as supportive of the 
claim that productive external effects (e.g., knowledge spillovers), which are 
gradually internalized at higher levels of data aggregation, are the driving forces 
behind procyclical productivity. Basu and Fernald (1997), likewise, confirmed that 
empirical estimates of RTS in U.S. production typically rise at higher levels of 
aggregation. However, Basu and Fernald argued that, rather than being caused by 
external economies, rising RTS estimates at higher levels of aggregation might result 
from data aggregation bias. The reason, they argued, is that heterogeneity across firms 
and sectors, in terms of RTS and factor input cyclicality, can result in upward-biased 
parameter estimates at higher levels of data aggregation.1 
 
This article is closely related to the empirical literature on procyclical productivity. It 
draws on Caballero-Lyons (1992), and tries to determine to what extent – and, if so, 
why? – RTS parameter estimates differ between various levels of data aggregation. 
An essential difference between this study and the above-referenced studies is that 
they used industry-level national-accounts data, while here we use detailed firm-level 
accounting data. The analysis is based on a fairly new and, in this context, unusually 
large data set including information on output and factor inputs for the complete 
population of firms with at least 20 (50) employees in the business (manufacturing) 

                                                 
1 This heterogeneity across firms may also give rise to a downward-biased RTS parameter estimate 

at higher levels of data aggregation. 
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sector.2 The data include about 7,900 firms in the business sector and 4,300 firms in 
the manufacturing sector observed annually from 1979 through 1995. 
 
In the first part of the analysis, we find that ordinary-least-squares (OLS) estimates of 
the RTS parameter rise in stages at higher levels of aggregation. In particular, we find 
that in the manufacturing sector, the point estimates rise from 0.68 at the firm level to 
1.0 at the two-digit level, and in the business-sector the estimates rise from 0.64 at the 
firm level to 1.0 at the one-digit level. This rising pattern of RTS parameter estimates 
is thus coherent with the empirical work by Caballero-Lyons (1992) and Basu-Fernald 
(1997). 
 
Our principal focus of the analysis is a world with poorly measured data. In particular, 
we examine if the empirical pattern of rising (and too low) RTS parameter estimates 
has anything to do with random errors on factor inputs that are gradually cancelled out 
at higher levels of aggregation. Indeed, if such errors are present – and, as we will 
argue below, we have every reason to believe this is the case – this rising pattern is 
exactly what we should expect to see in the data. 
 
The standard way of dealing with random errors in (the right-hand side) variables is to 
use some kind of instrumental-variable (IV) estimation technique.3 However, lots of 
studies have reported that it is, in general, difficult to find useful instruments for 
factor inputs in production-function regressions, and working with firm-level (micro) 
data certainly amplifies this problem. The instruments must be sufficiently correlated 
with the right-hand side variables and, at the same time, be valid in the sense of not 
being correlated with the error term. In fact, sometimes the cure (i.e., the use of 
instruments) turns out to be worse than the disease (the bias) – that is, the bias 
resulting from correlation between regressors and the error term is sometimes less 
harmful to the estimation result than is the use of poor instruments. This study is no 
exception in this respect; it is, as a rule, difficult to find useful instruments, especially 
at lower levels of aggregation, and trying to do comparable analysis at different levels 
of aggregation brings with it additional difficulties. 
 
In this study, we report both OLS and IV estimation results. We find that the rising 
pattern of RTS estimates is, in general, less apparent when using IV techniques. This 
result is just what we should expect when instruments adjust, partly or completely, for 

                                                 
2 A stratified sampling procedure has been used for the remaining smaller firms. 
3 Another reason that often justifies the use of instruments in production-function regressions is that 

productivity growth (i.e., the residual) correlates with capital and labor inputs. 
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random errors in factor inputs. Yet, it is difficult to draw any far-reaching conclusions 
from this result, in particular since the IV technique is in itself vulnerable to a number 
of issues, such as, for example, the mode of implementation and the size of the data. 
 
In order to determine if the random-error hypothesis is plausible, it is essential to 
know the error magnitudes implied by the obtained RTS estimates. For that reason, 
we expand the analysis to include a Monte Carlo simulation allowing for a calculation 
of the likely downward bias from random errors in factor inputs. These simulations 
are performed in two steps. In the first, we add random errors of different magnitudes 
on capital and labor inputs, proportional in size to the levels, and then calculate the 
asymptotic RTS parameter bias in this new data. This exercise suggests that average 
errors in labor equivalent to 7.5 percent of actual working hours cause a 0.3 
downward bias in the firm-level RTS estimate. Random errors in capital yield a 
smaller bias, which has to do with capital’s share in output being smaller than labor’s 
share. 
 
In the second step, we go from probability limit theory to standard empirical analysis 
while performing the same pre-analysis data work (i.e., identifying invalid and outlier 
values) and estimations on the new data as we did on the original data. This exercise 
backs up the asymptotic results from the first step, although now the downward bias is 
a bit smaller. It suggests, for example, that random errors in labor equivalent to 10 
percent of working hours yield a 0.3 downward bias in the firm-level RTS estimate. 
 
Hence, taken at face value, it appears as if random errors in labor equal to 7.5-10 
percent of actual working hours are consistent with the actual estimates. It accords, for 
example, surprisingly well with the finding that the RTS estimates rise from 0.68 
(0.64) at the firm level to 1.0 at the two-digit (one-digit) level in the manufacturing 
(business) sector. 
 
There are also other (not necessarily mutually exclusive) possible reasons for why the 
RTS estimates rise at higher levels of data aggregation – none of which, however, can 
explain the finding of decreasing returns at the firm level. One is the Basu-Fernald 
(1997) reflection that simple data aggregation may result in biased RTS estimates. 
Other possible reasons include external effects and factor hoarding tied to aggregate 
activity. However, while addressing all these possibilities in detail, we find that none 
is really challenging the random-error hypothesis.4 

                                                 
4 The present study makes uses of a simple first-order production-function approach. However, there 

are, of course, other ways of modeling the behavior of producers. For example, Morrison and Siegel 
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2  Analytical Framework 

Caballero and Lyons (1989, 1992) postulated an industry-specific value-added 
production function and derived an expression for the change in industry-level output 
as a function of the change in industry-level inputs, aggregate activity, and 
technology. Thus, their model compares movements in output with movements in 
inputs and, accordingly, relates to the growth accounting literature originating from 
Solow (1957). In this analysis, we follow their approach at a lower level of data 
aggregation. Consider a general production function ),,( VLKFY =  for a single firm, 
where Y is value-added output (that is, gross output net of intermediate inputs).5 
Capital and labor inputs are denoted by K and L. V is an index of the level of 
technology. 
 
Let the production function F be homogenous of degree γ  in capital and labor and of 
degree one in V. Logarithmic differentiating of F yields equation (2.1): 

 ,)( dvdkdl
Y

LFdkdy L +−





+= γ  (2.1) 

where dy, dk, dl, and dv are the growth rates of Y, K, L, and V. LF  is the marginal 
product of labor. We have used the homogeneity conditions γ=+ YLFKF LK /)(  and 

1// == YVFYEF VE  in the derivation of (2.1). 
 
Equation (2.1) can be further simplified by using the first-order conditions: 
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The price level of the firm’s output is denoted by P  and µ  is the markup factor. The 
wage rate w and the capital cost r are taken as given by the firms. Now, let vα  be 
labor’s share in total output, that is PYwLv /=α , and use the first relation in (2.2) to 
obtain YLFLv /=µα .6 By combining the two first-order conditions with the 

                                                                                                                                            
(1997, 1999) applied a more structural dynamic-cost-function approach, which facilitates an appraisal 
of scale economies and so-called agglomeration externalities while controlling for and identifying other 
factors (such as changes in the utilization of inputs, non-homotheticity in production, and short- and 
long-run substitution among internal and external inputs). This approach, however, is beyond the scope 
of the present study. 

5 Note that we take no account in this study of potential problems related to the improper use of 
value added as an output measure, even though we do not doubt that value added may sometimes fail to 
fully account for the productive contribution of the intermediate inputs. 

6 When output and input markets are competitive, the necessary conditions for producer equilibrium 
are that the share of every input in the value of output equals the output elasticity with respect to that 
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homogeneity condition for γ , the product vµα  can, in turn, be rewritten in terms of 
the RTS parameter γ  and labor’s share in total factor costs cα : 

 ,cvrKwL
PY γαµα

γ
µ

=⇔=
+

 (2.3) 

where )/( rKwLwLc +≡α . Substitution of cγα  for YLFL /  in (2.1) yields: 

 ,dvdxdy += γ  (2.4) 

where dx  is a weighted index of input growth: 

 iciicii dkdldx )1( αα −+≡ . (2.5) 

In what follows, we will refer to this specification as our baseline equation, and we 
choose to emphasize with a star superscript the possibility that the RTS parameter 
may include other effects, such as the Basu-Fernald aggregation bias, external 
economies, or unmeasured variation in factor inputs: 

 .εγ += ∗dxdy  (2.6) 

This completes the description of the model. 

3  Empirical Analysis 

3.1  Ordinary Least Squares 
Table 3.1 presents OLS estimates of the baseline equation (2.6) from different levels 
of aggregation. The table has seven columns. The first shows the level of aggregation; 
the lowest level is thus the firm level and the highest level is the one-digit level (i.e., 
total manufacturing). Column 2 shows the number of observations, and column 3 and 
4 the RTS parameter estimates and related standard errors. The last three columns 
give the goodness of fit, judged by either the adjusted R-square (column 5) or the 
Lagrange Multiplier (LM) test statistic (column 6), and the probability of observing 
this statistic when the null hypothesis of a correctly specified model is true (column 
7). 

                                                                                                                                            
input. It follows that under constant returns to scale (the elasticities sum to one) the value of output is 
equal to the total cost of the factors, and hence the share of labor in output then equals the share of 
labor in total factor costs (see Jorgenson (1986)). 
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The first row shows that the RTS parameter estimate is 0.76 at the one-digit level. 
This model, however, is diagnosed with a bad fit – only 4 percent of the variation in 
output growth is accounted for by the factor inputs. The reason for this is probably 
that there are simply too few data points at this level to get any useful estimates. The 
second row shows that the two-digit level is characterized by about constant returns.7 
The RTS parameter then goes down to 0.92 at the three-digit level and 0.68 at the firm 
level.8 Another thing that stands out from the table is that the LM test rejects the firm-
level specification (see the last two columns). The reason for the bad firm-level 
specification is, however, not that easy to appraise (we return to this in Section 3.2 
and 4).9 
 

Table 3.1 OLS estimates of the RTS parameter using firm-level data 
The manufacturing sector (ISIC 3), 1980-1995 

Agg. level # of obs. Gamma Std. error Adj. R2 LM-stat. P-value 
1-digit 16 0.765 0.756 0.040 2.37 0.306 
2-digit 128 1.025 0.110 0.403 0.56 0.755 
3-digit 448 0.919 0.060 0.399 1.44 0.488 
Firm 51,116 0.676 0.011 0.165 153.64 0.000 

Note: The estimates of the constant are not reported and standard errors are robust with respect to 
heteroscedasticity (White’s procedure). 

In order to improve the precision of the estimates from the one-digit level, we expand 
the data to the whole private business sector. Hence, in addition to firms in the 
manufacturing sector (ISIC 3), we include firms in the mining and quarrying sectors 
(ISIC 2), the electricity, gasworks, and water supply sectors (ISIC 4), the building and 
construction sectors (ISIC 5), and the wholesale and retail trade sectors (ISIC 6). The 

                                                 
7 The number of observations at this level represents data on eight two-digit sectors (31, 32,…,38) 

observed annually over 16 years. 
8 Decreasing returns have been reported before in the literature, albeit not (at least to our knowledge) 

at the firm level. For example, Caballero and Lyons (1992) found international support for decreasing 
returns in three-digit manufacturing; their point estimates ranged from 0.3 (France) to 0.8 (the United 
Kingdom). In addition, Caballero and Lyons (1992) found RTS parameter estimates between 0.75 and 
1.05 in U.S. manufacturing. 

9 One possible reason for why the firm-level model is rejected by the test is that firms differ in ways 
not captured by measured inputs. For that reason, we have tried a number of empirical settings, such as 
models with firm- and time-specific dummy variables. We have also tried the so-called dynamic panel 
data (DPD) estimation method by Arellano and Bond (1998). However, none of these alternatives did 
improve the firm-level specification. Another, and probably more likely, reason for the bad firm-level 
specification is that the data suffer from random errors (see Section 3.2 and 4). 
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most striking result of Table 3.2 is, as expected, the higher and more precise one-digit 
RTS parameter estimate. The somewhat larger standard errors at the two- and three-
digit levels in Table 3.2 probably reflect increased heterogeneity among the firms in 
the larger sample. The firm-level model is still rejected. 

Table 3.2 OLS estimates of the RTS parameter using firm-level data 
The private business sector (ISIC 2-6), 1980-1995 

Agg. level # of obs. Gamma Std. error Adj. R2 LM-stat. P-value 
1-digit 80 1.019 0.194 0.753 3.07 0.216 
2-digit 240 0.996 0.161 0.676 3.16 0.206 
3-digit 707 0.929 0.073 0.465 5.08 0.079 
Firm 82,908 0.642 0.009 0.152 284.27 0.000 

Note: The estimates of the constant are not reported and standard errors are robust with respect to 
heteroscedasticity (White’s procedure). 

An alternative empirical route to improve the one-digit parameter estimates is to make 
use of additional data that span a longer time period. This, however, may bring up 
questions about the comparability of the results. Still, however, and without ignoring 
this complexity, we want to emphasize here that the rising pattern of parameter 
estimates is present also in a different two-digit national-accounts data set (see Table 
3.3). 

Table 3.3 OLS estimates of the RTS parameter using national-accounts data 
The manufacturing sector (ISIC 3), 1968-1993 

Agg. level # of obs. Gamma Std. error Adj. R2 LM-stat. P-value 
1-digit 26 1.220 0.049 0.949 3.14 0.208 
2-digit 208 1.135 0.030 0.907 3.39 0.184 

Note: The estimates of the constant are not reported and standard errors are robust with respect to 
heteroscedasticity (White’s procedure). 

Several points are noteworthy. The first is that the firm-level model is always rejected 
by the LM test. This may, as pointed out in footnote 9, be the result of an incomplete 
model specification due to large heterogeneity in the data. For example, if individual 
differences in the distribution of firms are not completely accounted for, inference and 
specification are likely to be problematic. We have responded to this test outcome – 
which seems to mandate a change in the model specification – by testing the standard 
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specifications, such as the fixed and random effects regressions (combined with time 
dummies). This did not help the firm-level model. 
 
A second issue has to do with the capital data; specification problems may certainly 
arise because it takes time to build capital, and it also takes time for potential external 
benefits of capital accumulation to be felt. That is, it is possible not only that there are 
building-time delays, but that externalities affect output with a time lag. There is also 
the closely related question of how long capital stays productive after it has been 
built.10 
 
A third prospective problem surrounds our implicit assumption in equation (2.6) about 
input quality and use; as now, capital and labor are assumed to be homogenous, and 
their rates of utilization are not allowed to change over time. The theoretical ideal 
should, of course, be input measures adjusted for quality differences and time-varying 
utilization rates.11 
 
All these remarks, which hence draw attention to the familiar problems of the simple 
linear production model, call for deeper analysis. This could mean, for example, that 
more data efforts have to be done, or that the model specification should be checked 
more rigorously. However, the current data do not allow for much as regards input 
quality and use, and more work with the empirical specification will probably, in the 
end, lead the way to more structural models (such as the Morrison-Siegel (1997, 
1999) dynamic cost function approach) which, due to data limitations and space, lie 
outside the scope of this study.12 For these reasons, we do not pursue this route. 
Instead we take the following alternative. 

3.2  Instrumental Variables 
In the previous section, we found that the degree of RTS rise at higher levels of data 
aggregation. One potential reason for this – albeit, of course, not the only one – is that 
the data suffer from random measurement errors. In particular, if firm-level capital or 
labor inputs are measured with random errors, a rising pattern of RTS estimates 
(OLS) is just what we should expect to get. The reason is that these errors are likely to 
be cancelled out at higher levels of aggregation. The LM model specification test is 
                                                 

10 In order to check if the capital data is especially problematic, we have constructed real capital 
from gross investments (i.e., we have used the perpetual investment method (PIM)). This, however, did 
not change any results. 

11 A number of studies have pointed out that factor inputs are in general rather difficult to measure 
(see, e.g., Bernanke and Parkinson (1991), Benhabib and Jovanovic (1991), and Griliches (1994)). 

12 See also footnote 4. 
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yet another sign of random errors: the gradual rise of the P-values at higher levels in 
tables 3.1 to 3.3 may, in fact, reflect a gradual improvement of the model specification 
due to receding errors. The standard response to errors in variables is to use an IV-
estimation technique. 
 
Table 3.4 shows the two-stage least squares (2SLS) estimation results of the baseline 
equation (2.6) (the OLS analogues are Table 3.1 and 3.2). The choice of instruments 
is always a difficult one, and here this difficulty is amplified by the fact that it is not 
clear from the outset if the same instruments should be used at each level of 
aggregation or if the same selection procedure for the instruments should instead be 
used. In the present analysis, we have used the same selection procedure. The 
procedure starts with the same set of prospective instruments at each level of data 
aggregation, and then sequentially leaves out those who are most correlated with the 
residuals. The procedure stops when the instruments are jointly independent of the 
second-stage residuals (according to an F-test statistic below 2). 

Table 3.4 2SLS parameter estimates of the RTS parameter using firm-level data 
The manufacturing (ISIC 3) and private business sector (ISIC 2-6), 1990-1995 

Agg. level # of obs. Gamma Std. error Adj. R2 F-stat. P-value 
ISIC 3       
    1-digit 14 1.164 0.826 0.070 1.80 0.21 
    2-digit 112 1.220 0.241 0.182 1.73 0.07 
    3-digit 392 0.687 0.161 0.042 0.95 0.50 
    Firm 28,552 0.939 0.058 0.010 1.51 0.17 
ISIC 2-6       
    1-digit 70 0.922 0.095 0.575 1.33 0.22 
    2-digit 210 0.884 0.083 0.347 1.46 0.13 
    3-digit 617 0.887 0.157 0.048 1.19 0.28 
    Firm 41,850 1.137 0.055 0.011 0.81 0.56 

Note: The estimates of the constant are not reported and standard errors are robust with respect to 
heteroscedasticity (White’s procedure). The F-statistic in column 6 (and the associated P-value in 
column 7) refers to a joint test of the instruments that are used in the regression (see the main text); 
since the 2SLS regression is robust with respect to heteroscedasticity, this F-value can be interpreted as 
a model specification test (for details, see White (1980)). 

The main conclusions from Table 3.4 are as follows. First, 2SLS yields, as expected, a 
less apparent pattern in the RTS parameter estimates. It thus appears as if the gradual 
rise in these estimates at higher levels of aggregation that was found in Section 3 has 
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been washed away by the instruments used in the 2SLS.13 Second, the firm-level 
model specification is now much better than before; in fact, the LM test does not any 
longer reject the firm-level model – a finding that probably also spring from smaller 
errors in the right-hand side variables. 
 
It is, however, not possible to draw any far-reaching conclusions from these results. In 
particular, although the RTS estimates in Section 3 seem to be largely in line with the 
random-errors hypothesis, they cannot say anything – at least in isolation – about the 
error characteristics, such as their frequency distribution and magnitude. In fact, in 
order to judge if the random-error hypothesis is at all plausible, it is essential to know 
the error magnitudes implied by the obtained RTS estimates. For that reason, we 
expand the analysis to include a Monte Carlo simulation allowing for a calculation of 
the likely RTS parameter bias caused by random errors. 

4  The Impact of Random Errors 

Our starting point in this section is a world with poorly measured data. Suppose that 
output and input growth are measured with error according to: 

 
,~
,~

2

1

η
η

+=
+=

dxxd
dyyd

 (4.1) 

where the variables with a tilde designate the observed data at hand. The difference 
between observed and true output and input growth rates is denoted by 1η  and 2η . 
Substitution of the expressions in (4.1) into the baseline equation (2.6) yields: 

 ).(~~
12

** ηηγεγ +−+= xdyd  (4.2) 

Assume that the random terms ε , 1η  and 2η  are (i) from zero mean distributions, (ii) 
mutually independently distributed, and (iii) unrelated to dx . Their variances are 
denoted by 2

εσ , 2
1η

σ , 2
2η

σ . The covariance between xd~  and the error term 
( 12

* ηηγε +− ) is 2*
2η

σγ . Hence, when inputs are measured with random errors, one of 
the essential requirements for unbiased OLS estimates is violated. It can be shown 
that the RTS parameter estimate converges in probability to: 

                                                 
13 We have tried a number of settings in order to see to what extent the IV-technique does in fact 

provide a simple way out of the problem with random errors in the right-hand side variables. It turned 
out to be difficult to find useful instruments, especially at the firm level, and it was, as a consequence, 
quite easy to get different estimation results. This finding is in line with most other micro data work we 
are aware of, and it suggests, for example, that even though IV provides an intuitively appealing 
solution to the problem with stochastic regressors, it might be less useful in real applications. 
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where 2
dxσ  is the variance in dx . According to equation (4.3), random errors in factor 

inputs will hence produce a downward bias in the RTS estimates. The extent of this 
bias, in turn, depends on the ratio of the variance of the random errors ( 2

2η
σ ) to the 

variance of the weighted inputs ( 2
dxσ ). The larger random error variance there is, the 

larger is the downward bias.14 The problem hence is that the regressor in equation 
(4.2) is stochastic and, as such, not independent of the residuals. 
 

4.1  Monte Carlo Simulation 
Imagine now a world with no measurement errors in the variables. In order to obtain 
such a hypothetical firm-level data we impute output growth by weighted input 
growth for each firm 

 .)1( dkdldy αα −+≡  (4.4) 

By constructing output growth according to equation (4.4), we obtain experimental 
(hypothetical) firm-level input and output growth data that can be taken to mean both 
that the firms’ production is subject to constant RTS and that inputs and output move 
in complete parallel.15 This hence implies that the data do not anymore suffer from 
random errors, and that a simple regression of firm-level output growth on weighted 
input growth (i.e., a regression of the baseline equation (2.6)) would give a 1.0 point 
estimate of the RTS parameter. We then add uniformly and independently distributed 
random errors (Z) to the level of inputs and output according to: 

 ,,,),]5.0,5.0U[1( LKYZZZ =−+= δ  (4.5) 

where δ  is a scaling factor, and U[-0.5,0.5] is a function that generates a uniformly 
distributed random number between -0.5 and 0.5. The errors are hence assumed to be 
proportional in size to the levels. Uniformly distributed errors in the levels translate 
into triangularly distributed errors in the growth rates.16 The resulting distribution in 

                                                 
14 The effect of biasing the estimate toward zero in this way is known as attenuation. 
15 In this section, we simulate the effects of random errors in factor inputs while using experimental 

data constructed from the original firm-level manufacturing data that were used in Section 3. The same 
simulations have been made also on experimental data based on the original firm-level business-sector 
data. The simulation results were roughly the same. 

16 We have experimented with other distributions in order to make sure that this choice does not 
qualitatively affect the results (see also section 4.2).  
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the weighted inputs (i.e., in the right-hand-side variable in equation (2.6)), is more 
complicated to compute. In the simulations below, the scaling factor is set to equal 
0.05, 0.1, 0.2, 0.3, … 0.8. Table 4.1 shows how the scale parameter translates into 
average and maximum errors in the levels and growth rates. 

Table 4.1 Size of differently measured random errors as a function of the scale 
parameter δ  

δ  Errors in the level Errors in the growth rate 
 Maximum abs. Average abs. Maximum abs. Average abs. 
0.05 2.5 % 1.2 % 5 % 1.7 % 
0.10 5.0 % 2.5 % 10 % 3.3 % 
0.20 10.0 % 5.0 % 20 % 6.7 % 
0.30 15.0 % 7.5 % 30 % 10.0 % 
0.40 20.0 % 10.0 % 40 % 13.3 % 
0.50 25.0 % 12.5 % 50 % 16.7 % 
0.60 30.0 % 15.0 % 60 % 20.0 % 
0.70 35.0 % 17.5 % 70 % 23.3 % 
0.80 40.0 % 20.0 % 80 % 26.7 % 

Note:  The numbers in the table are, for ease of presentation, reported with a maximum of one decimal. 

Diagram 4.1 shows this variance ratio, as calculated by equation (4.3), as a function of 
the average absolute error in labor. The maximum error is twice as large (see Table 
4.1). The data inherent in the diagram originate from a Monte Carlo simulation with 
1,000 replicates.17 The asymptotic bias in the RTS parameter estimate can easily be 
calculated from the diagram as one minus the variance ratio. According to the 
diagram, average errors in labor equivalent to 1.2, 2.5, 5, 7.5, 10, 12.5, and 15 percent 
of hours worked result in a firm-level downward bias that converges in probability to 
0.01, 0.04, 0.15, 0.29, 0.43, 0.55, and 0.64. Hence, given that the firm-level RTS 
estimates of Section 2 are 0.64-0.68, this simulation result suggests a 7.5 percent 
average absolute random error in working hours. 
 

[Diagram 4.1] 
 
Diagram 4.2 shows the similar estimates for random errors on capital. These errors 
give rise to smaller bias, which has to do with capital’s share in the production being 

                                                 
17 Using the experimental data, we first add the errors on each firm’s labor input and then calculate 

the variance ratio according to equation (4.3) for different levels of data aggregation. This procedure is 
then repeated 1,000 times. Diagram 4.1 shows the average variance ratio over all these replicates. 
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smaller than labor’s share (this means that errors on capital play – per construction – a 
smaller role in production-function regressions than do similar errors on labor). 
Random errors on capital corresponding to 1.2, 2.5, 5, 7.5, 10, 12.5, and 15 percent 
generate a downward bias of 0.01, 0.01, 0.02, 0.02, 0.04, 0.05, and 0.07. 
 

[Diagram 4.2] 
 
In order to appraise the real impact of random errors on the estimated RTS parameter, 
we next perform exactly the same data processing and production-function 
regressions as in Section 3 (on the new data). Diagram 4.3 and 4.4 show the results. 
This exercise supports the asymptotic results of Diagram 4.1 and 4.2, although the 
downward bias is now a bit smaller. According to Diagram 4.3, random errors on 
labor equal to 1.2, 2.5, 5, 7.5, 10, 12.5, and 15 percent generate a downward bias on 
the firm-level RTS estimates equivalent to 0.01, 0.03, 0.11, 0.20, 0.30, 0.38, and 0.44, 
respectively. Thus, the 0.64-0.68 RTS estimate of Section 3 now indicates random 
errors in labor equivalent to 10 percent of the actual hours (rather than 7.5 percent). 
 

[Diagram 4.3] 
 

[Diagram 4.4] 
 
Diagram 4.5 shows the analogue to Diagram 4.3 and 4.4 when output is subject to 
errors. This is the same as including the standard model error term. As suggested by 
equation (4.3), there is now no systematic pattern in the RTS parameter estimates, and 
the reason why the bias is at all different from zero has to do with the pre-analysis 
data work (i.e., the removal of invalid and outlier observations) rather than the added 
errors. 
 

[Diagram 4.5] 
 
There is, of course, little reason to believe that merely random errors in labor are 
present in the data. On the contrary, a widely shared view is that capital is in general 
more difficult to measure than labor. However, although this is often the case, due to a 
number of difficulties as regards the measurement of real capital, it does not imply 
that random errors are larger for capital than for labor. 
 
Hence, to sum up, this section shows that random errors in factor inputs are probably 
one important reason for why RTS parameter estimates (OLS) rise at higher levels of 



 
 

17

aggregation. Random errors may also explain the finding of decreasing returns at the 
firm level. A qualified guess is that errors in labor equal to 7.5-10 percent of actual 
working hours generate a 0.3 downward bias in the RTS estimate. 

4.2  Is this reasonable? 
It certainly is a legitimate question to ask if the magnitude of these random errors is 
really plausible. For example, random errors equal to 7.5-10 percent of actual working 
hours imply that even though firms on average make use of, say, 40 hours a week per 
employee, they report 36-37 or 43-44 hours. Is this too much imprecision to be 
credible? This is, of course, a tricky question to answer, and although it warrants 
further investigation, we want to stress here that we think not. Yet, as real-world data 
probably suffer also from random errors in capital, we also want to stress here that the 
RTS estimates in Section 3 are, in fact, likely to reflect a combination of errors in 
capital and labor. The role played by the errors in labor is, however, much larger since 
labor’s share in production is larger than capital’s share. 

5  Other Explanations 

There are other potential reasons why RTS parameter estimates rise at higher levels of 
aggregation – none of which, however, can explain why firm-level RTS estimates are 
so small. In this section we shortly present these alternatives. 

5.1  Aggregation Bias 
Basu and Fernald (1997) showed that heterogeneity across sectors in terms of RTS 
and factor cyclicality may have cyclical implications at higher levels of aggregation. 
This effect represents an omitted-variable bias which, in principle, can generate either 
rising or falling RTS estimates at higher levels of aggregation. The bias is procyclical 
– that is, it causes RTS estimates to rise at higher levels – if firms with above-average 
input cyclicality also are characterized by above-average RTS.18 To see this, consider 
aggregate output and weighted inputs computed as Divisia indices: 
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18 In addition, this bias will contribute positively to output growth if firms with higher than average 

RTS have higher than average growth in inputs. 
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The share of firm i’s nominal value added in one-digit industry value added is denoted 
by iλ . Now, substitute firm-level output growth ( itititit dxdy εγ += ) into the first 
equation in (5.1) to obtain ∑ += i ititititt dxdy )( εγλ . Some algebraic operations on this 
expression and the use of the second equation in (5.1) yield: 

 ,ttttt Rdxdy εγ ++=  (5.2) 

where tγ  is a weighted average of RTS and tR  is determined by: 

 .)(∑ −=
i

ittititt dxR γγλ 19 (5.3) 

Hence, according to (5.3), the aggregation effect is procyclical if firms with above-
average input cyclicality have above-average RTS. In order to control for this, we 
have adjusted output for tR , and then re-estimated all regressions. This did not wipe 
out the rising pattern of RTS estimates (see Appendix B). 

5.2  External Economies 
Assume that the change in firm-level productivity evolves according to itit dvdv 1ε+= . 
Hence, productivity growth equals the sum of a constant term ( dv ) and a random term 
( it1ε ).20 Also, let the change in the firm-level externality be generated by an aggregate 
variable ( tde ) and an error term ( it2ε ) according to ittitit dede 2εβ += . Substitution of 

itde  and itdv  into equation (2.6) yields the left-hand side of equation (5.4): 

 ),(
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tittitititit dxdydedxdy εγ

β
εβγ +

−
=⇒++=  (5.4) 

where ititit 21 εεε += . The right-hand side is obtained by replacing the external-effect 
variable ( tde ) with the change of aggregate output ( tdy ) and then taking the sum over 
all firms. Equation (5.4) hence shows that the RTS parameter will rise at higher levels 
of aggregation if beta lies between 0 and 1. The logic is, of course, that the externality 
is gradually internalized at higher levels. 
 

                                                 
19 Note again that because the current data lack information on intermediate inputs, we formulate 

this model in terms of value-added (rather than gross output). According to Basu and Fernald (1997), 
equation (5.2) should include an additional term capturing the difference between the growth of value-
added output and the growth of intermediate inputs. However, because this difference in growth rates 
cannot be computed here, we implicitly assume that value-added output moves one-to-one over time 
with intermediate inputs.  

20 Fluctuations in output are here seen as arising solely from supply disturbances. For a discussion of 
both demand- and supply-determined macroeconomic fluctuations, see Blanchard and Quah (1989), 
and Blanchard (1989).  
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However, while using roughly the same data as we do in this study, Lindström (2000) 
found that a technology-shocks model statistically outperforms the externality model. 
In this study, we reach the same conclusion.21 There must hence be more to the story 
than external economies. 

5.3  Cyclical Errors 
Sbordone (1996) stressed that economy-wide activity may provide information about 
sector-level factor utilization rates. The argument is that aggregate variables, through 
their information content about the future economic prospects, may affect the use of 
inputs. Thus, cyclical errors, which are by definition positively related to aggregate 
activity, may cause RTS estimates to rise at higher levels of aggregation. 
 
In order to study the impact of cyclical errors on the RTS estimate, we have estimated 
equation (2.6) on a number of sub-periods. It turned out that although the period used 
for estimation mattered, at least to some extent, this did not, in general, remove the 
pattern of rising RTS estimates.22 

6  Concluding Remarks 

This study begins with the observation that production-function RTS parameter 
estimates (OLS) rise at higher levels of aggregation and that firm-level estimates are 
smaller than one. We find that RTS estimates rise from 0.64-0.68 at the firm level to 
about 1.0 at the two-digit (one-digit) level in manufacturing (the private business 
sector). These empirical regularities are interesting in their own right and are also 
consistent with other work. 
 
Our starting point in the analysis is a world with poorly measured data. In particular, 
we try to see to what extent the obtained regularities originate from random errors in 
the factor inputs. The reason for this concern is that is it well-known by now that this 
kind of errors can easily bias parameter estimates toward zero. In the literature, this is 
often called an attenuation effect. 
 

                                                 
21 A joint test of the linear restrictions imposed by the left-hand side of (5.4) on the technology-

shocks model is always rejected by the data (these results are available on request). 
22 This does not mean, however, that factor hoarding is not present in the data; on the contrary, we 

found a sharper rise in the RTS estimates in the first half of the 1990s (the period 1991-1993 has been 
identified as the largest recession since the 1930s) than in the 1980s (see Appendix C). 



 
 

20

The standard way of dealing with errors in variables is to use some kind of IV 
estimation technique. This, however, is not always that easy to do since it may be 
difficult to find useful instruments, in particular at lower levels of data aggregation. 
Sometimes, in fact, the cure (i.e., the instruments) is worse than the disease (the bias 
resulting from stochastic regressors). In this study, we report both OLS and IV. It 
turns out that the rising pattern of RTS estimates is less apparent when using IV, a 
finding that is just what we should expect to get when instruments adjust, partly or 
completely, for the errors in the right-hand side variables. 
 
In order to determine if the random-error hypothesis is credible, however, it is vital to 
know the error magnitudes implied by the obtained RTS estimates. For that reason, 
we perform a Monte Carlo simulation, which allows for a rough calculation of the 
likely downward bias in the RTS estimates. This exercise suggests that errors in labor 
equivalent to about 7.5-10 percent of actual working hours produce a 0.3 downward 
bias. Random errors in capital yield smaller bias, which has to do with capital’s share 
being smaller than labor’s share. Hence, the simulation results accord surprisingly 
well with the real estimates. 
 
There are also other potential explanations to the finding of rising RTS parameter 
estimates (none of these, however, can explain why the firm-level estimates are below 
one). For example, it may reflect the Basu-Fernald (1997) aggregation bias, external 
effects in production, or cyclical errors tied to aggregate activity. This study addresses 
all these possibilities, but finds that none is really challenging the random-error 
hypothesis. 
 
One quite remarkable implication of this study is that it seems to support the idea that 
RTS may better be estimated at a high rather than a low level of aggregation. Thus, if 
this proposal is true, this study seems to conflict with much of the current thought in 
the microeconomic literature, which says that the theory of the firm applies only to 
disaggregated units and that aggregate estimates of production characteristics (such as 
RTS) are questionable as long as there is no well-behaved theory of data aggregation 
allowing for the representative-firm paradigm. 
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Appendix A – Data Description 

The present study is based on detailed input and output measures from the firm level. 
The data set represents a sub-sample of the Financial Accounts Database, provided by 
Statistics Sweden.23 The data include annual time-series book value records of value-
added, capital and labor inputs, and factor costs for Swedish firms from 1979 through 
1995.24 The data include the complete population of firms with at least 20 (50) 
employees in the business (manufacturing) sector. A stratified sampling procedure has 
been applied for the smaller firms. The data include about 7,900 firms in the business 
sector and 4,300 firms in the manufacturing sector observed annually from 1979 
through 1995. 
 
Total labor compensation (that is, total wage expenses, social security contributions, 
and mandatory insurance fees) is used for the labor cost. Capital is measured by the 
book values of the stocks of machinery and equipment, and buildings and land. Labor 
is measured by the average number of employees per year. Value added is deflated by 
a two-digit producer price index (PPI) and capital by a two-digit investment price 
index (IPI). Capital costs are deflated by the same two-digit PPI and labor costs by a 
one-digit labor cost index (LCI).25 In order to derive an indicator of firm-level input 
activity, itdx , capital and labor are, according to (2.5), weighted by their shares in 
total factor costs. Following Hall and Jorgenson (1967), firm i’s user cost of asset j  is 
computed according to: 
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23 These data have been used previously by Forsling (1996), who investigated the degree of 

utilization of tax allowances in Swedish manufacturing, and Hansen (1999), who studied the influence 
of credit market conditions on firm’s investment behavior. In addition, Lindström (2000) used roughly 
the same data when analyzed the procyclicality of measured productivity.  

24 These book values are established by accountants and reported on the firms’ balance sheet.  
25 These deflators are obtained from the Statistical Yearbook of Sweden. Note that the current data 

set does not include price information for individual firms, implying that firm-specific deflators cannot, 
unfortunately, be used. Abbot (1991) found that estimates of production function parameters using 
firm-specific deflators may yield different results than estimates using industry-wide deflators. Note 
also that although the producer price index is a gross-output deflator, it is used in this study to deflate 
value-added. The reason for this is that there are no obvious alternatives to this deflator. If the price on 
intermediate inputs moves one-to-one with the price on value-added output, the gross-output deflator is 
the same as the value-added deflator.  
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We assume that the rate of annual depreciation jδ  equals 0.123 for machinery and 
equipment, and 0.036 for buildings and land.26 The real rate of return required on 
capital is measured by subtracting the inflation rate from the required nominal (tax-
adjusted) rate of return on capital, that is jπρ − . The investment tax credit j

iITC  
measures the proportion of the original investment cost that is subsidized (this 
variable is obtained directly from the data). The present value of depreciation 
allowances for an investment is captured by jΓ .27 The required payment for the jth 
asset equals jj Kr , where jK  is the current value of the stock of this particular asset. 
The total cost of employing capital, broadly measured as the sum of machinery and 
equipment, and buildings and land, hence equals the sum of the required payment for 
each of the four types of assets. 
 

Table A.1 Summary statistics of the manufacturing data (ISIC 3), 1980-1995 

Variable # of obs. Mean value Std. dev. Minimum Maximum 
1-digit level      
    ady  16 0.013 0.075 −0.052 0.258 
    adk  16 0.018 0.044 −0.064 0.073 
    adl  16 −0.016 0.036 −0.101 0.051 
    adx  16 −0.007 0.032 −0.067 0.056 
    aα  16 0.785 0.054 0.691 0.868 
Firm level      
    idy  51,116 0.028 0.279 −1.939 1.995 
    idk  51,116 0.042 0.363 −1.000 1.999 
    idl  51,116 0.004 0.166 −0.993 1.979 
    idx  51,116 0.015 0.167 −0.993 1.938 
    iα  51,116 0.855 0.121 0.021 1.000 

 
Table A.1 reports descriptive statistics on growth rates of value added, capital, labor, 
weighted inputs, and labor’s share in total factor costs. The firm-level variables are 
marked by subscript i and the one-digit analogues by subscript a. Weighted inputs at 
the aggregate level is defined as a weighted average of the percentage change in 
aggregate capital and labor, that is, aaaaa dkdldx )1( αα −+≡ , where aα  is the 
average of labor’s share across firms. 

                                                 
26 These depreciation rates are the same as in Hansson (1991).  
27 Note that due to various measurement difficulties, estimates of this user cost of capital are at best 

approximations to the true cost of capital. However, because capital generally is less cyclical than 
labor, it should be safer to underestimate this cost than the opposite. The reason is that spurious cyclical 
errors in the baseline equation (2.6) are less likely to show up when labor’s share in total costs is large.  
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Appendix B – Aggregation Bias 

In order to control for the Basu-Fernald (1997) aggregation effect, one can estimate 
aggregation-bias-corrected value-added output (i.e., an output measure acquired by 
subtracting the aggregation term tR  from actual value-added growth) on the growth 
of primary inputs. However, to calculate the aggregation effect for the three-digit 
level, firm-level estimates of RTS are needed (see equation (5.3)).28 Firm-level 
estimates are difficult to obtain when many firms are observed only a few years (the 
data is unbalanced). Therefore, we now restrict the sample to firms observed over the 
whole time period 1980-1995. Table B.1 and B.2 below show that the RTS parameter 
estimates do not change much when tR  is subtracted from output growth (compare 
the baseline estimates with the adjusted estimates). 
 

Table B.1: Aggregation-bias adjusted OLS estimates of the RTS 
Swedish manufacturing (ISIC 3) balanced data, 1980-1995 

Agg. level # of obs. Gamma Std. error Adj. R2 LM-stat. P-value 
Baseline       
    1-digit 16 0.242 0.390 −0.063 1.64 0.439 
    2-digit 128 0.982 0.076 0.530 0.83 0.659 
    3-digit 448 0.866 0.034 0.610 0.09 0.955 
    Firm 6,304 0.568 0.029 0.146 20.83 0.000 
Adjusted       
    1-digit 16 0.248 0.383 −0.062 1.69 0.429 
    2-digit 128 1.022 0.080 0.565 0.32 0.853 
    3-digit 448 0.871 0.034 0.624 0.33 0.847 
    Firm - - - - - - 

Notes: The estimates of the constant are not reported and standard errors are robust with respect to 
heteroscedasticity (White’s procedure). 

 

                                                 
28 Analogously, in order to compute this effect for the two-digit level, three-digit level estimates of 

the returns to scale are needed. 
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Table B.2: Aggregation-bias adjusted OLS estimates of the RTS 
Swedish business sector (ISIC 2-6) balanced data, 1980-1995 

Agg. level # of obs. Gamma Std. error Adj. R2 LM-stat. P-value 
Baseline       
    1-digit 80 0.316 0.105 0.387 3.04 0.219 
    2-digit 240 0.436 0.151 0.373 2.83 0.243 
    3-digit 698 0.601 0.137 0.416 2.71 0.258 
    Firm 8,400 0.563 0.026 0.151 26.12 0.000 
Adjusted       
    1-digit 80 0.316 0.105 0.389 3.04 0.218 
    2-digit 240 0.431 0.148 0.381 2.85 0.240 
    3-digit 698 0.603 0.1490 0.411 2.45 0.294 
    Firm - - - - - - 

Note: The estimates of the constant are not reported and standard errors are robust 
with respect to heteroscedasticity (White’s procedure). 
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Appendix C – Estimations in Sub-Periods 

To show the impact of cyclical errors on the RTS estimates, we estimate the baseline 
equation (2.6) on a number of sub-periods. These periods are overlapping, which 
implies that the estimates are correlated. Table C.1 shows that although the period 
used for estimation matters, this do not, in general, remove the pattern of rising 
estimates. 
 

Table C.1 OLS estimates of the returns-to-scale parameter in sub-periods 

Level of Gamma, estimated value 
Aggregation 1987 1988 1989 1990 1991 1992 1993 1994 1995 
SIC 3          
    1-digit -0.05 0.05 -0.22 -0.68 0.73 0.62 0.94 2.35 1.03 
    2-digit 0.95 0.97 0.91 0.88 1.09 1.11 1.07 1.23 1.09 
    3-digit 0.91 0.90 0.87 0.85 0.90 0.97 0.95 0.97 0.93 
    Firm 0.65 0.66 0.65 0.64 0.64 0.64 0.66 0.69 0.70 
SIC 2-6          
    1-digit 0.51 0.48 0.39 0.31 0.38 1.09 1.24 1.25 1.24 
    2-digit 0.66 0.63 0.58 0.54 0.62 1.07 1.20 1.22 1.20 
    3-digit 0.86 0.86 0.84 0.83 0.86 1.00 0.97 1.00 0.98 
    Firm 0.62 0.63 0.62 0.61 0.61 0.61 0.64 0.66 0.66 

Note: The columns show which eight-year period is used in the estimation: the heading 1987 means the 
period 1980-1987, the heading 1988 means the period 1981-1988, … , the heading 1995 means the 
period 1988-1995. The estimates of the constant are not reported and standard errors are robust with 
respect to heteroscedasticity. 
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Diagram 4.1: Variance ratio as a function of average absolute error in labor 
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Note: The diagram shows the variance ratio )/( 222
2η

σσσ +dxdx  as a function of the average absolute 
error in the level of labor (working hours). The downward bias can be calculated from the diagram as 
one minus the variance ratio. The data in the diagram come from Monte Carlo simulations. 
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Diagram 4.2: Variance ratio as a function of average absolute error in capital 
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Note: The diagram shows the variance ratio )/( 222
2η

σσσ +dxdx  as a function of the average absolute 
error in the level of capital. The downward bias can be calculated from the diagram as one minus the 
variance ratio. The data in the diagram come from Monte Carlo simulations. 
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Diagram 4.3: Estimated RTS bias as a function of average absolute error in labor 
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Note: The diagram shows the estimated RTS parameter bias as a function of the average absolute error 
in the level of labor (working hours). The data in the diagram come from Monte Carlo simulations. 
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Diagram 4.4: Estimated RTS bias as a function of average absolute error in capital 
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Note: The diagram shows the estimated RTS parameter bias as a function of the average absolute error 
in the level of capital. The data in the diagram come from Monte Carlo simulations. 
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Diagram 4.5: Estimated RTS bias as a function of average absolute error in output 
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Note: The diagram shows the estimated RTS parameter bias as a function of the average absolute error 
in the level of value-added output. The very small bias comes solely from the data processing (i.e., the 
omission of invalid and outlier values) and not from the errors in output (see equation (4.3), which 
shows that if the only source of measurement error is in measuring output, there would be no RTS bias 
provided that there is no other source of bias). 
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